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MOMENTS AND ASYMPTOTICS FOR A CLASS OF SPDES

WITH SPACE-TIME WHITE NOISE

LE CHEN, YUHUI GUO, AND JIAN SONG

Abstract. In this article, we consider the nonlinear stochastic partial dif-
ferential equation of fractional order in both space and time variables with
constant initial condition:(

∂β
t +

ν

2
(−Δ)α/2

)
u(t, x) = Iγt

[
λu(t, x)Ẇ (t, x)

]
t > 0, x ∈ R

d,

with constants λ �= 0 and ν > 0, where ∂β
t is the Caputo fractional derivative

of order β ∈ (0, 2], Iγt refers to the Riemann-Liouville integral of order γ ≥ 0,

and (−Δ)α/2 is the standard fractional/power of Laplacian with α > 0. We

concentrate on the scenario where the noise Ẇ is the space-time white noise.
The existence and uniqueness of solution in the Itô-Skorohod sense is obtained

under Dalang’s condition. We obtain explicit formulas for both the second
moment and the second moment Lyapunov exponent. We derive the p-th
moment upper bounds and find the matching lower bounds. Our results solve
a large class of conjectures regarding the order of the p-th moment Lyapunov
exponents. In particular, by letting β = 2, α = 2, γ = 0, and d = 1, we
confirm the following standing conjecture for the stochastic wave equation:

1

t
logE[|u(t, x)|p] � p3/2, for p ≥ 2 as t → ∞.

The method for the lower bounds is inspired by a recent work of Hu and Wang,
where the authors focus on the space-time colored Gaussian noise case.
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1. Introduction

Let Ẇ be a space-time white noise, namely, a centered Gaussian noise with
covariance

E[Ẇ (t, x)Ẇ (s, y)] = δ(t− s)δ(x− y),(1.1)

where δ(·) is the Dirac delta function. The following stochastic heat equation (SHE)

(1.2) (SHE)

⎧⎨⎩
(

∂

∂t
− ν

2

∂2

∂x2

)
u(t, x) = λu(t, x)Ẇ (t, x), t > 0, x ∈ R,

u(0, ·) = u0,

and stochastic wave equation (SWE)

(1.3) (SWE)

⎧⎪⎨⎪⎩
(

∂2

∂t2
− ν

2

∂2

∂x2

)
u(t, x) = λu(t, x)Ẇ (t, x), t > 0, x ∈ R,

u(0, ·) = u0,
∂

∂t
u(0, ·) = u1,

with λ �= 0, ν > 0, u0, u1 ∈ R, are two canonical stochastic partial differential
equations.

Denote the p-th moment Lyapunov exponent of u(t, x) by

(1.4) l(p) := lim
t→∞

1

t
logE [|u(t, x)|p] .

The corresponding system is said to be intermittent if the function p : [1,∞) �→
l(p)/p is strictly increasing. For SHE (1.2), the intermittency property suggests
that the solution u(t, x) develops a few high peaks (see [24, 39]). With the help of
Feynman-Kac representation for the moments of the solution to SHE (1.2), assum-

ing ν = 1 and u0 > 0, Chen [19] obtained the precise value l(p) = λ4

24p(p
2−1) which

yields the intermittency property. We refer to [5,8,19–21,23,34,39,51] and the ref-
erences therein for more literature on the intermittency property of stochastic heat
equations.

In contrast, much less is known for the hyperbolic counterpart—SWE (1.3).
The lack of Feynman-Kac representation poses a notable difficulty; for instance,
the existence of the limit in the definition (1.4) of l(p) in general is not even clear,
except that l(2) (resp. l(p) for p ≥ 2) was obtained in [3,7] (resp. [2]) for SWE with
noise that is white in time (resp. with noise that does not depend on time). Thus,
instead of studying l(p), we aim to provide bounds for lower and upper Lyapunov
exponents:

(1.5) C1p
θ1 ≤ lim inf

t→∞

1

t
logE [|u(t, x)|p] ≤ lim sup

t→∞

1

t
logE [|u(t, x)|p] ≤ C2p

θ2 ,

with the hope of matching the exponents (i.e. θ1 = θ2), which also suggests the
presence of some type of intermittency property for the hyperbolic system.

To our best knowledge, only the following upper bound of the p-th moment
Lyapunov exponents are known. In particular, Conus et al [22] proved that for
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some constant C > 0,

lim sup
t→∞

1

t
logE [|u(t, x)|p] ≤ Cp3/2 for all p ≥ 2.(1.6)

It has been long conjectured that the exponent 3/2 in (1.6) is sharp (i.e., θ1 = θ2 =
3/2 in (1.5)); yet there lacks a rigorous proof. Dalang and Mueller [27] studied the
three-dimensional SWE with a Gaussian noise that is white-in-time and colored-in-
space with a bounded covariance function, namely,

E

[
Ẇ (t, x)Ẇ (s, y)

]
= δ(t− s)f(x− y),(1.7)

where f is a nonnegative, nonnegative definite and bounded function. Using an
earlier developed Feynman-Kac-type formula for moments in [28], they established
the following large-time asymptotics:

C1p
4/3 ≤ lim inf

t→∞

1

t
logE [|u(t, x)|p] ≤ lim sup

t→∞

1

t
logE [|u(t, x)|p] ≤ C2p

4/3,(1.8)

for all p ≥ 2 and x ∈ R
3; see [27, Theorem 1.1]. To obtain the lower bound in

(1.8), their arguments crucially depend on the property that one can find a small
indicator function below f(x) near the origin, i.e., c1I{|x|≤r} ≤ f(x) for all x ∈ R3.
This requirement prevents the adaptation of their method to solve the space-time
white noise case.

Recently, Hu and Wang [38] obtained the matching lower and upper p-th moment
Lyapunov exponents for a wide range of SPDEs with space-time colored Gaussian
noise

E

[
Ẇ (t, x)Ẇ (s, y)

]
= γ(t− s)Λ(x− y).(1.9)

Their proof relies heavily on the assumption γ(t) ≥ C|t|−θ and Λ(x) ≥ C|x|−λ

which does not hold for the white noise case. As a consequence, the small ball
nondegeneracy property for Green’s function (see Section 3.1 ibid.) which plays
a key role in Hu-Wang’s argument does not apply to the white noise case (see
Remark 2.1 ibid.). To resolve this issue, a nondegeneracy property for the product of
Green’s functions is tailored specially for the white noise case (see Proposition 5.1).
Moreover, in the white noise case, the balanced Feynman diagrams (see Definition
5.7) make the right contribution to the desired lower bound, while all admissible
Feynman diagrams do in the colored noise case. Therefore, just like the SHE case,
the SWE with space-time white noise needs a separate treatment.

One of the major contributions of this paper is to carry out such arguments and
confirm the conjecture, in Proposition 5.10, about the moment asymptotics of SWE
(1.3) by showing that if u0 > 0 and u1 ≥ 0, then

C1 p
3/2 ≤ lim inf

t→∞

1

t
logE[|u(t, x)|p] ≤ lim sup

t→∞

1

t
logE[|u(t, x)|p] ≤ C2 p

3/2, p ≥ 2,

(1.10a)

C1 t ≤ lim inf
p→∞

1

p3/2
logE[|u(t, x)|p] ≤ lim sup

p→∞

1

p3/2
logE[|u(t, x)|p] ≤ C2 t, t > 0,

(1.10b)

where

C1 :=
|λ|

48
√
2 e3/2(2ν)1/4

and C2 :=

√
2|λ|

(2ν)1/4
.(1.11)
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Note that the above constants C1 and C2 are not optimal. For related results in
both parabolic and hyperbolic settings, please see Appendix A.

It turns out that the method we use to resolve the above conjecture can be
applied to a much wider class of stochastic partial differential equations (SPDEs).
Indeed, in this paper, we will study the following stochastic fractional diffusion
equation with both SHE (1.2) and SWE (1.3) as two special cases:

(1.12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
∂β
t +

ν

2
(−Δ)

α/2
)
u(t, x) = Iγt

[
λu(t, x)Ẇ (t, x)

]
, t > 0, x ∈ Rd,

u(0, ·) = u0, if β ∈ (0, 1],

u(0, ·) = u0,
∂

∂t
u(0, ·) = u1, if β ∈ (1, 2],

with

α > 0, β ∈ (0, 2], γ ≥ 0, λ �= 0, ν > 0, u0, u1 ∈ R,

where Ẇ is space-time white noise, (−Δ)α/2 is the standard (α = 2), fractional

(0 < α < 2) or power (α > 2) of Laplacian. The symbol ∂β
t denotes the Caputo

fractional differential operator of order β > 0:

∂β
t f(t) :=

⎧⎪⎪⎨⎪⎪⎩
1

Γ(n− β)

∫ t

0

f (n)(τ )

(t− τ )β+1−n
dτ, if β �= n,

dn

dtn
f(t), if β = n,

where n = 
β� is the smallest integer that is not smaller than β (i.e., 
·� is the
ceiling function), and Γ(x) is the Gamma function (see Remark 2.7 for a brief
recall). We use Iγt to refer to the Riemann-Liouville integral in the time variable
to the right of zero Iγ0+; see Definition 2.1.

The SPDE (1.12) is interpreted as the following integral equation:

(1.13) u(t, x) = J0(t, x) + λ

∫ t

0

∫
Rd

p(t− s, x− y)u(s, y)W (ds, dy),

where J0(t, x) is the solution to the homogeneous equation (see (3.3) and (3.4)),
p(t, x) is the underlying fundamental solution (see (3.2)), and the stochastic integral
refers to the Walsh or Skorohod integral. Set the following four constants:

θ := 2(β + γ)− 2− βd

α
, tp := p1+

1
1+θ t,

Θ := (2π)−d

∫
Rd

E2
β,β+γ(− 1

2ν|ξ|
α)dξ, t̂ := Θ Γ (θ + 1) tθ+1,

(1.14)

where the function Ea,b(z) is the Mittag-Leffler function of two parameters (see,
e.g., [41, Section 1.8]), i.e., for a, b > 0,

Ea,b(z) :=

∞∑
k=0

zk

Γ(ak + b)
, z ∈ C.(1.15)

We use the convention Ea(·) := Ea,1(·).
We will prove in Theorem 3.3 that under Dalang’s condition

(1.16)

⎧⎪⎨⎪⎩
d < 2α+

α

β
min{2γ − 1, 0}, if β ∈ (0, 2),

d < αmin{2, 1 + γ}, if β = 2,
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there exists a unique random field solution u(t, x) with finite p-th moment for all
p ≥ 2, t > 0 and x ∈ Rd. It is an easy exercise to check that Dalang’s condition
(1.16) implies that θ > −1 and Θ < ∞, so that all constants in (1.14) are well-
defined. The aim of this paper is to establish Theorem 1.1, which gives the exact
formula for the second moment and the sharp moment asymptotics terms of t and
p, respectively.

Theorem 1.1. Suppose that Dalang’s condition (1.16) is satisfied and let u(t, x)
be the solution to (1.12). Recall that the quantities θ, Θ, tp and t̂ are defined in
(1.14). Then the solution u(t, x) is stationary in x and the p-th moment satisfies
the following properties:

(a) When p = 2,

(1.17) E
[
u2(t, x)

]
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u2
0 Eθ+1

(
λ2t̂
)

if β ∈ (0, 1],

u2
0 Eθ+1

(
λ2t̂
)

+2u0u1t Eθ+1,2

(
λ2t̂
)

if β ∈ (1, 2],
+2u2

1t
2 Eθ+1,3

(
λ2t̂
)

for all t > 0 and x ∈ R
d. As a consequence,

(1.18) lim
t→∞

1

t
logE

[
u(t, x)2

]
=
(
λ2ΘΓ(θ + 1)

) 1
θ+1 , for all x ∈ R

d.

(b) For any p ≥ 2,

||u(t, x)||2p ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2u2

0 Eθ+1

(
8λ2pt̂

)
if β ∈ (0, 1],

2u2
0 Eθ+1

(
8λ2pt̂

)
+4u0u1t Eθ+1,2

(
8λ2pt̂

)
if β ∈ (1, 2],

+4u2
1t

2 Eθ+1,3

(
8λ2pt̂

)(1.19)

for all t > 0 and x ∈ Rd. As a consequence,

lim sup
ptθ+1→∞

1

tp
logE[|u(t, x)|p] ≤ 1

2

(
8λ2ΘΓ(θ + 1)

) 1
θ+1 .(1.20)

In particular, by freezing p ≥ 2 or t > 0, we have the following two asymptotics:

lim sup
t→∞

1

t
logE[|u(t, x)|p] ≤ 1

2

(
8λ2ΘΓ(θ + 1)

) 1
θ+1 p1+

1
θ+1 ,(1.21a)

lim sup
p→∞

1

p1+
1

θ+1

logE[|u(t, x)|p] ≤ 1

2

(
8λ2ΘΓ(θ + 1)

) 1
θ+1 t.(1.21b)

(c) If in addition, we have
(1) either β ∈ (0, 2) and the fundamental function p(t, x) is nonnegative or

α = β = 2 and γ = 0; and
(2) the initial position u0 is strictly positive and the initial velocity u1 is non-

negative,
there exists a positive constant C such that for all x ∈ R

d,

lim inf
ptθ+1→∞

1

tp
logE [|u(t, x)|p] ≥ C.(1.22)
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In particular, by freezing p ≥ 2 or t > 0, with the same constant C as in (1.22), we
have the following two asymptotics:

lim inf
t→∞

1

t
logE [|u(t, x)|p] ≥ Cp1+

1
θ+1 ,(1.23a)

lim inf
p→∞

1

p1+
1

θ+1

logE [|u(t, x)|p] ≥ Ct.(1.23b)

As applications of Theorem 1.1, in Appendix A we shall revisit some SPDEs
which have attracted considerable attention in the literature and calculate sharp
moment asymptotics for the solutions.

Remark 1.2. The motivation of studying the SPDE (1.12) with the Caputo frac-

tional derivative ∂β
t and the Riemann-Liouville integral Iγt can be summarized as

follows.

(i) The Caputo fractional derivative ∂β
t is a natural choice for the Cauchy prob-

lem with data prescribed at time zero; see, e.g., Chapters 1 and 3 of [31] for an
in-depth discussion. Moreover, the parameter β ranges from 0 to 2 so that one can
put SHE (1.2) and SWE (1.3) in a unified framework. It is known that there may
exist some property jump for the solution u(t, x) at β = 1 or 2, which is a conse-
quence of the corresponding property jump for the fundamental solution p(t, x) at
β = 1 or 2. Our results explicitly demonstrate this phenomenon. Depending on the
specific properties under consideration, such property jump may be pronounced or
not at all. For example, for Dalang’s condition (1.16), there is no property jump
at β = 1, but one is present at β = 2. However, for the moment asymptotics, as
can be seen from (1.21) and (1.23), there is no property jump at both β = 1 and
2. Note that the observation is consistent with the moment asymptotics when the
noise is time-independent; see Theorem 1.7 and Example 2.7 of [10].

(ii) The Riemann-Liouville integral Iγt was introduced historically in the litera-
ture, e.g., with γ = 1− β (for β ∈ (0, 1)) in [44], γ = 
β� − β (for β ∈ (0, 2)) in [6],
γ = 0 in [13], and a general γ ≥ 0 in [14]. This fractional integral provides some
non-local effect (in time) and demonstrates a smoothing effect, as can be seen from
the moment asymptotics (1.21) and (1.23). Mathematically, the incorporation of
this fractional integral is both natural and does not introduce any additional diffi-
culty in the analysis, which can be seen from the proof of Theorem 2.8. Moreover,
such a fractional integral offers a slightly more versatile framework for potential
mathematical modeling.

To conclude the introduction, we highlight some of the contributions of this
paper:

(1) The conjecture on the moment asymptotics of SWE (1.3) is solved; see (1.10)
and Example A.2.

(2) For the solutions of a large class of SPDEs, explicit representations (1.17)
for the second moments and (1.18) for the second moment Lyapunov exponents
are obtained; the asymptotic behavior of p-th moments is characterized sharply by
the upper bounds (1.20) and the lower bounds (1.22). Regarding the quantities
obtained in Theorem 1.1, as will be shown in Appendix A, some of them recover
known results for SPDEs with some specific parameters (α, β, γ, d) in the literature,
while, to our best knowledge, most of them (in particular the lower bounds for p-th
moments) are new. Moreover, the quantities that characterize the asymptotics of
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the solutions to (1.12) depend on the parameters (α, β, γ, d) in an interesting way
(see also the figures in Appendix A for an illustration), which may relate to physical
phenomena and desire further investigation.

(3) For the fundamental solution of (1.12), we extend the results in [14] from
α ∈ (0, 2] to all α > 0 (see Section 2.3). As a consequence, Dalang’s condition
(1.16) allows to consider SPDE (1.12) in high dimension d, if α is sufficiently big.

The paper is organized as follows: Some preliminaries on the fractional calculus,
Mittag-Leffler functions, and the fundamental solutions under the settings of α > 0,
β ∈ (0, 2] and γ ≥ 0 are given in Section 2. Then in Section 3, we establish
the existence and uniqueness of the solution in a slightly more general setting.
The second moment formula and the p-th moment upper bounds are obtained in
Section 4; while the lower bounds are derived in Section 5. Finally, in Appendix
A we provide some examples with discussions, and in Appendix B we prove some
technical lemmas that are used in the paper.

Notation. Let W =
{
Wt(A) : A ∈ Bb

(
R

d
)
, t ≥ 0

}
be space-time white noise de-

fined on a complete probability space (Ω,F ,P), where Bb(R
d) is the collection of

Borel sets with finite Lebesgue measure. Let

Ft := σ(Ws(A) : 0 ≤ s ≤ t, A ∈ Bb(R
d)) ∨ N (t ≥ 0)

be the natural filtration augmented by the σ-field N generated by all P–null sets
in F . We use ||·||p to denote the Lp(Ω)–norm. The Fourier transform Fg = ĝ of a

function g ∈ L1(Rd) is given by

(1.24) Fg(ξ) = ĝ(ξ) :=

∫
Rd

g(x)e−ix·ξdx.

We use

Br(x) :=
{
y ∈ R

d : |y − x| =
√
(y1 − x1)2 + · · ·+ (yd − xd)2 < r

}
to denote an open ball centered at x ∈ Rd with radius r. For a ∈ R, 
a� (resp. 
a�)
is the smallest (resp. largest) integer that is not smaller (resp. larger) than a, i.e.,
the ceiling (resp. floor) function. We use the convention N = {1, 2, . . . }.

2. Preliminaries

2.1. Fractional calculus and Mittag-Leffler functions. In this subsection, we
provide some preliminaries on fractional integrals and derivatives in the sense of
Riemann-Liouville and we also recall Caputo fractional derivatives. We refer to
[41, 46] for details.

Let α ≥ 0 be a constant and [a, b] be a finite interval on R. Let f(x) be a complex-
valued function defined on [a, b]. We only recall the left-sided integrals/derivatives
which will be used in this article, and the right-sided case is similar and thus
omitted.

Definition 2.1. The Riemann-Liouville integral Iαa+f of order α > 0 is defined by

(2.1) (Iαa+f)(x) :=
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α
dt, x ∈ [a, b].
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Definition 2.2. The Riemann-Liouville derivative Dα
a+f of order α ∈ R+ \ N is

defined by(
Dα

a+f
)
(x) :=

dn

dxn

(
In−α
a+ f

)
(x) =

1

Γ (n− α)

dn

dxn

∫ x

a

f(t)

(x− t)α−n+1
dt, n = 
α� ,

and when α = n ∈ N,
(
Dα

a+f
)
(x) =

dn

dtn
f(x). We use the convention that Dα

a+f :=

I−α
a+ f , when α < 0.

For 1 ≤ p ≤ ∞, we denote by Lp(a, b) the set of complex-valued functions f on
[a, b] with finite Lp-norm ‖f‖p, where

‖f‖p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∫ b

a

|f(x)|pdt
) 1

p

, 1 ≤ p < ∞,

ess sup
a≤x≤b

|f(x)|, p = ∞.

Lemma 2.3 (Property 2.2 on p. 74 of [41]). For α > β > 0 and f(x) ∈ Lp(a, b), 1 ≤
p ≤ ∞, we have(

Dβ
a+I

α
a+f
)
(x) = Iα−β

a+ f(x), for x ∈ [a, b] almost everywhere.

Lemma 2.4 (Property 2.5 on p. 81 of [41]). For α, β > 0, we have(
Iα0+t

β−1
)
(x) =

Γ(β)

Γ(β + α)
xβ+α−1 and

(
Dα

0+t
β−1
)
(x) =

Γ(β)

Γ(β − α)
xβ−α−1.

Definition 2.5 ((2.4.1) on p. 91 of [41]). The Caputo fractional derivative of order
α on [a, b] can be defined via the Riemann-Liouville derivative as follows,

(2.2)
(
CDα

a+f
)
(x) :=

⎛⎝Dα
a+

⎡⎣f(·)− �α�−1∑
k=0

f (k)(a)

k!
(· − a)k

⎤⎦⎞⎠ (x), x ∈ [a, b].

We are ready to recall the formulas of the solutions to Cauchy problems for
differential equations with the Caputo fractional derivatives. For γ ∈ [0, 1), we
define the weighted space Cγ [a, b] of continuous functions as follows,

Cγ [a, b] :=
{
f(x) : (x− a)γf(x) ∈ C[a, b]

}
.

Consider the following Cauchy Problem, for λ ∈ R, n ∈ N and n− 1 < β < n,

(2.3)

{
(CDβ

0+f)(x)− λf(x) = y(x), x ∈ [0, b],

f (k)(0) = bk, bk ∈ R for k = 0, 1, . . . , n− 1.

We suppose that y(x) ∈ Cγ [0, b] with 0 ≤ γ < 1 and γ ≤ β. Then (2.3) has a
unique solution given by (see [41, (4.1.62)]):

(2.4) f(x) =
n−1∑
j=0

bjx
jEβ,j+1(λx

β) +

∫ x

0

(x− t)β−1Eβ,β(λ(x− t)β)y(t)dt,

where Ea,b(z) is the Mittag-Leffler function; see (1.15). One may get more explicit
expressions for special values of a and b, which will be used in this paper:
(2.5)

E1/2(z) = 2ez
2

Φ
(√

2z
)
, E1(z) = ez, E2(z) = cosh(

√
z), E2,2(z) =

sinh(
√
z)√

z
,
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where Φ(x) = 1√
2π

∫ x

−∞ e−
x2

2 dx is the cumulative distribution function of standard

normal distribution. Another formula that will be useful in this paper is

Eα,β (|z|)−
1

Γ(β)
= |z|Eα,α+β (|z|) ,(2.6)

which can be obtained immediately using the definition of the Mittag-Leffler func-
tion in (1.15); see also (1.8.38) on p.45 of [41]. The asymptotic behavior of the
Mittag-Leffler function along the positive and negative real lines plays an impor-
tant role in the paper, which has been summarized in Lemma 2.6:

Lemma 2.6. If all a > 0 and b ∈ C, we have that

• if a < 2, as z → +∞,

Ea,b(z) =
1

a
z(1−b)/a exp(z1/a)− 1

Γ(b− a)

1

z
+ o
(
z−1
)
;

• if a ≥ 2, as z → +∞,

Ea,b(z) =
1

a

∑
n∈Z:|n|≤a/4

(
z1/a exp

[
2nπi

a

])1−b

exp

[
exp

(
2nπi

a

)
z1/a

]

− 1

Γ(b− a)

1

z
+ o
(
z−1
)
;

• if a < 2, as z → −∞,

Ea,b(z) = − 1

Γ (b− a)

1

z
+ o
(
z−1
)
;

• if a = 2, as z → −∞,

Ea,b(z) = |z|(1−b)/2 cos

(√
|z|+ (1− b)π

2

)
− 1

Γ(b− 2)

1

z
+ o(z−1).

In particular, for all C > 0,

lim
t→∞

1

t
logEa,b (Cta) = C

1
a .

Proof. The case when z → ∞ is derived from 1.8.27 (resp. 1.8.29) of [41] when
a < 2 (resp. a ≥ 2). The case when a < 2 (resp. a = 2) and z → −∞ is a
consequence of 1.8.28 (resp. 1.8.31) (ibid.). When a < 2, the statement for the
limit is a direct consequence of the asymptotics at +∞. When a ≥ 2, denoting
z = Cta, we have

lim
t→∞

1

t
logEa,b(z) = lim

t→∞

1

t
log

∑
n∈Z:|n|≤a/4

(
z

1
a exp

[
2nπi

a

])1−b

exp

[
exp

(
2nπi

a

)
z

1
a

]

= lim
t→∞

1

t
log

∑
n∈Z:|n|≤a/4

z
1−b
a exp

[
z

1
a cos

2nπ

a

]
exp

[
i

(
(1− b)2nπ

a
+ z

1
a sin

(
2nπ

a

))]

= lim
t→∞

1

t
log

(
z

1−b
a exp

(
z

1
a

))
= C

1
a .

�
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Remark 2.7. We recall some basic facts for the Gamma function. For complex num-
bers with strictly positive real part, the Gamma function is defined via a convergent
improper integral:

Γ(z) =

∫ ∞

0

tz−1e−tdt, Re(z) > 0.

Then, Gamma function is defined as the analytic continuation of this integral func-
tion which is a holomorphic function in the whole complex plane except non-positive
integers where the function has simple poles. The Gamma function has no zeros,
so the reciprocal gamma function 1

Γ(z) is an entire function which has the following

infinite product expansion:

1

Γ(z)
= lim

n→∞

z(z + 1) · · · (z + n)

n!nz
, z ∈ C.

In particular, we will use the following fact (see, e.g., [45, 5.2.1 on p. 136])

(2.7)
1

Γ(z)
≡ 0, for z = 0,−1,−2, . . . .

and will need the reflection formula for the Gamma function (see, e.g., [45, 5.5.3
on p. 138]), namely,

Γ(z)Γ(1− z) =
π

sin (πz)
, z �= 0,±1, . . . .(2.8)

2.2. Fox H-function. The Fox H-function plays a critical role in expressing the
fundamental solutions to our equations. It is a generalization of the Meijer G-
function (see Chapter 16 of [45]). Detailed properties of the Fox H-function can
be found in many books including Chapters 1 & 2 of [40], Section 1.12 of [41],
Section 8.2 of [47]. Its applications to statistics and astrophysics can be found
in [43]. See also the book [32] for the applications of the Fox H-function to the
pseudo-differential equations of parabolic type. In this part, we give a brief account
of this special function.

Let m, n, p, q be integers such that 0 ≤ m ≤ q and 0 ≤ n ≤ p. Let ai, bj ∈ C

and αi, βj ∈ R+ for i = 1, · · · , p and j = 1, · · · , q. Denote

a∗ :=
n∑

i=1

αi −
p∑

i=n+1

αi +
m∑
j=1

βj −
q∑

j=m+1

βj ,(2.9)

Δ :=

q∑
j=1

βj −
p∑

i=1

αi,(2.10)

δ :=

p∏
i=1

α−αi
i

q∏
j=1

ββi

j ,(2.11)

μ :=

q∑
j=1

bj −
p∑

i=1

ai +
p− q

2
.(2.12)
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Now we consider the following ratio of the Gamma functions:

Hm,n
p,q (s) :=

n∏
i=1

Γ (1− ai − αis)

p∏
i=n+1

Γ (aj + αis)

×

m∏
j=1

Γ (bj + βjs)

q∏
j=m+1

Γ (1− bj − βjs)

.(2.13)

Assume that the two sets of poles of Hm,n
p,q (s) in (2.13) (see Remark 2.7 for the

poles of the Gamma function) do not overlap, i.e.,{
bj	 =

−bj − �

βj
, � = 0, 1, · · ·

}⋂{
aik =

1− ai + k

αi
, k = 0, 1, · · ·

}
= ∅,(2.14)

and let L be any contour that separates these two sets of poles. Then the following
Mellin-Barnes integral, named as the Fox H-function [35],

1

2πi

∫
L
Hm,n

p,q (s)z−sds =: Hm,n
p,q

(
z
∣∣∣ (a1,α1),··· ,(ap,αp)

(b1,β1),··· ,(bq ,βq)

)
,(2.15)

is well defined in many cases. To be more precise, it is analytic with respect to z
in the sector

|arg(z)| < a∗ × π

2
provided a∗ > 0.

In the case a∗ ≤ 0, we do not have the sector analyticity, but if Δ = 0, it is still
analytic for both |z| > δ and 0 < |z| < δ. At |z| = δ, the function is well defined
when Re(μ) < −1. See Theorems 1.1 and 1.2 of [40] for the precise statement and
[12] for a diagram exposition.

2.3. Fundamental solutions. The fundamental solutions to (1.12) in the case
when d = 1, β = 1, γ = 0, and α ∈ 2N have been studied in [42] and [36]. In [29],
Debbi studied the fundamental solutions to (1.12) when d = 1, β = 1, γ = 0, and
α ∈ (1,∞) \ N and then, with Dozzi [30], they studied the corresponding SPDEs
with space-time white noise. This part can be viewed as a generalization of their
results to a class of more general of SPDEs. The Fox H-function, introduced in
Section 2.2, allows us to study the fundamental solutions to (1.12) with much more
general parameters in a unified way.

Theorem 2.8 generalizes Theorem 4.1 of [14] from α ∈ (0, 2] and β ∈ (0, 2) to
the case α > 0 and β ∈ (0, 2]. The statement of the theorem remains almost the
same except the conditions on α and β. The proof also follows the same lines of
arguments as those in [14]; one may also check the proof of Theorem 3.1 in [13] for
the case when γ = 0. The case when β = 2 is new. For the readers’ convenience,
we state the theorem and present its proof below to indicate why the ranges of α
and β can be extended.

Theorem 2.8. For α ∈ (0,∞), β ∈ (0, 2], and γ ≥ 0, the solution to

⎧⎪⎪⎨⎪⎪⎩
(
∂β
t +

ν

2
(−Δ)α/2

)
u(t, x) = Iγt [f(t, x)] , t > 0, x ∈ Rd,

∂k

∂tk
u(t, x)

∣∣∣∣
t=0

= uk(x), 0 ≤ k ≤ 
β� − 1, x ∈ Rd,

(2.16)
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is

u(t, x) = J0(t, x) +

∫ t

0

ds

∫
Rd

dy f(s, y) tD
�β�−β−γ
0+ Z(t− s, x− y),(2.17)

where tD
�β�−β−γ
0+ denotes the Riemann-Liouville derivative D

�β�−β−γ
0+ acting on the

time variable,

J0(t, x) :=

�β�−1∑
k=0

∫
Rd

uk(y)∂
�β�−1−k
t Z(t, x− y)dy(2.18)

is the solution to the homogeneous equation and Z(t, x) := Zα,β,d(t, x) is the corre-
sponding fundamental solution. If we denote

Y (t, x) := Yα,β,γ,d(t, x) = tD
�β�−β−γ
0+ Zα,β,d(t, x),

Z∗(t, x) := Z∗
α,β,d(t, x) =

∂

∂t
Zα,β,d(t, x), if β ∈ (1, 2],

then we have the following Fourier transforms:

FZα,β,d(t, ·)(ξ) = t�β�−1Eβ,�β�(− 1
2νt

β |ξ|α),(2.19)

FYα,β,γ,d(t, ·)(ξ) = tβ+γ−1Eβ,β+γ(− 1
2νt

β|ξ|α),(2.20)

FZ∗
α,β,d(t, ·)(ξ) = tkEβ,k+1(− 1

2νt
β|ξ|α), if β ∈ (1, 2].(2.21)

Moreover, when β ∈ (0, 2), we have the following explicit expressions:

Z(t, x) = π− d
2 t�β�−1|x|−dH2,1

2,3

(
|x|α

2α−1νtβ

∣∣∣∣ (1,1), (�β�,β)(d/2,α/2), (1,1), (1,α/2)

)
,(2.22)

Y (t, x) = π− d
2 |x|−dtβ+γ−1H2,1

2,3

(
|x|α

2α−1νtβ

∣∣∣∣ (1,1), (β+γ,β)

(d/2,α/2), (1,1), (1,α/2)

)
,(2.23)

and, if β ∈ (1, 2),

Z∗(t, x) = π− d
2 |x|−dH2,1

2,3

(
|x|α

2α−1νtβ

∣∣∣∣ (1,1), (1,β)(d/2,α/2), (1,1), (1,α/2)

)
,(2.24)

where H2,1
2,3

(
· · ·
∣∣ ···
···
)
refers to the Fox H-function [40].

Proof. The proof follows a standard argument using the Fourier and Laplace trans-

forms in the space and time variables, respectively, which are denoted by f̂ and g̃.
Let us apply the Fourier transform to (2.16) first to obtain⎧⎪⎨⎪⎩

∂β
t û(t, ξ) +

ν

2
|ξ|αû(t, ξ) = Iγt

[
f̂(t, ξ)

]
, ξ ∈ Rd,

∂k

∂tk
û(t, ξ)

∣∣∣∣
t=0

= ûk(ξ) , 0 ≤ k ≤ 
β� − 1, ξ ∈ Rd .

Apply the Laplace transform on the Caputo derivative using [31, Theorem 7.1 on
p. 134]:

L
[
∂β
t û(t, ξ)

]
(s) = sβ ˜̂u(s, ξ)− �β�−1∑

k=0

sβ−1−k ûk(ξ).

On the other hand, it is known that (see, e.g., [48, (7.14) on p. 140])

LIγt
[
f̂(t, ξ)

]
= s−γ ˜̂f(s, ξ), �(γ) > 0.
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Thus,

˜̂u(s, ξ) = (sβ +
ν

2
|ξ|α
)−1

⎡⎣�β�−1∑
k=0

sβ−1−k ûk(ξ) + s−γ ˜̂f(s, ξ)
⎤⎦ .

Notice that (see, e.g., [46, (1.80) on p. 21])

L
[
tβ−1Eα,β(−λtα)

]
(s) =

sα−β

sα + λ
, for �(s) > |λ|1/α.

Hence,

û(t, ξ) =

�β�−1∑
k=0

tkEβ,k+1

(
−ν

2
|ξ|αtβ

)
ûk(ξ)

+

∫ t

0

dτ τβ+γ−1Eβ,β+γ

(
−ν

2
|ξ|ατβ

)
f̂(t− τ, ξ).

Now if we denote

U(t, ξ) := t�β�−1Eβ,�β�

(
−ν

2
|ξ|αtβ

)
,(2.25)

using the fact that tD
γ
0+ = dγ

dtγ when γ ∈ Z and for all γ ∈ R (see [46, (1.82) on p.
21])

tD
γ
0+

(
tβ−1Eα,β(λt

α)
)
= tβ−γ−1Eα,β−γ(λt

α),

we see that

û(t, ξ) =

�β�−1∑
k=0

(
dk

dtk
U(t, ξ)

)
û�β�−1−k(ξ) +

∫ t

0

dτ
(

tD
�β�−β−γ
0+ U(τ, ξ)

)
f̂(t− τ, ξ).

It remains to prove the expressions in (2.22) – (2.24) under the assumption that
β ∈ (0, 2). A key observation is that for Zα,β,d(t, x) defined in (2.22), its Fourier
transform is given by U(t, ξ) in (2.25), namely,

FZα,β,d(t, ·)(ξ) = U(t, ξ), for all α > 0, β ∈ (0, 2), and d ≥ 1.(2.26)

Indeed, (2.26) is proved in Lemma 4.2 of [13], but only for the case of α ∈ (0, 2].
Here we claim that the restriction of α ∈ (0, 2] is not necessary. In the proof of this
lemma, one needs to consider two cases separately: d = 1 and d ≥ 2. In the case of
d = 1, the conditions we need are

2− β

α
> 0 and 1 ∧ α > 0.

For the second case – d ≥ 2, the proof is a direct application of Corollary 2.5.1 of
[40], where one needs to verify the following conditions:

Conditions in [40] the corresponding conditions in our setting

a∗ > 0 2− β > 0

(2.6.8) min(α, d) > 0

(2.6.9) d > 1

(2.6.10) d > 1
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Apparently, the above two conditions hold for all α > 0 and β ∈ (0, 2). Hence,
Lemma 4.2 of [13] is true for all α > 0 and β ∈ (0, 2). This proves both (2.19)
and (2.22). Once one obtains the expressions for Zα,β,d(t, x) and FZα,β,d(t, ·)(ξ),
it is routine to obtain the corresponding expressions of their fractional or integer
derivatives/integrals; see [13] for more details. This completes the proof of Theorem
2.8. �

Remark 2.9. For the case β = 2, the expression in (2.19) can be simplified using
the fourth expression in (2.5).

Remark 2.10. The corresponding parameters (a∗,Δ, δ) in (2.9), (2.10), and (2.11)
for the Fox H-functions Z(1, x), Z∗(1, x) and Y (1, x) are all the same:

a∗ = 2− β, Δ = α− β, and δ = 2−α
(
2α/2αα/2 + αα

)
β−β.

The corresponding μ parameters (2.12) are equal to, respectively,

1

2
(−2
β�+ d+ 1),

d− 1

2
, and

1

2
(−2β − 2γ + d+ 1).

Remark 2.11. When β ∈ (0, 2), we have the condition a∗ = 2 − β > 0. Then
thanks to part (iii) of Theorem 1.2 in [40], the Fox H-functions Z(1, x), Z∗(1, x)
and Y (1, x) are nontrivial analytic functions for x �= 0, where the expressions can
be obtained by using residue calculus. By the identity theorem (see [1, Theorem
3.2.6]) and the fact that analytic functions Z(1, x), Z∗(1, x) and Y (1, x) are not
identical to zero, the support of analytic functions Z(1, x), Z∗(1, x) and Y (1, x) is
the whole pace. In this context, we have omitted the verification of condition (1.1.6)
from the same reference, which confirms the absence of overlapping poles. These
conditions have been verified in [13]. For an in-depth discussion on checking these
conditions, we refer the interested reader to the symbolic computational tools and
the corresponding documentation in [12]. It should be noted that these functions
potentially exhibit singular behavior at x = 0. The comprehensive analysis of their
asymptotic properties near zero has been given in Lemma 4.3 and Remark 4.4
of [14].

3. Existence and uniqueness of the solution for the

nonlinear equation

In this section, we shall establish the well-posedness of (1.12) by working under
slightly more general settings as follows. For α > 0, β ∈ (0, 2], γ ≥ 0, ν > 0, and

Ẇ as in (1.12), consider
(3.1)⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
∂β
t +

ν

2
(−Δ)

α/2
)
u(t, x) = Iγt

[
ρ (u(t, x)) Ẇ (t, x)

]
, t > 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd, if β ∈ (0, 1],

u(0, x) = u0(x),
∂

∂t
u(0, x) = u1(x), x ∈ Rd, if β ∈ (1, 2],

where ρ is Lipschitz continuous and u0, u1 ∈ L∞ (Rd
)
. The fundamental solutions

for (3.1), as well as (1.12), consist of three components: Zα,β,d(t, x), Z
∗
α,β,d(t, x)

and Yα,β,γ,d(t, x), which have been studied in [14, Theorem 4.1] for the case when
β ∈ (0, 2) and α ∈ (0, 2]. The more general setting, namely, the case when α > 0
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and β ∈ (0, 2], is proved in Theorem 2.8. Throughout the rest of the article, we
will write

p(t, x) := Yα,β,γ,d(t, x),(3.2)

whose Fourier transform is given in (2.20).
The solution to the homogeneous equation of (3.1) is given by

J0(t, x)

=

⎧⎪⎪⎨⎪⎪⎩
∫
Rd

Zα,β,d(t, x− y)u0(y)dy, if β ∈ (0, 1],∫
Rd

Z∗
α,β,d(t, x− y)u0(y)dy +

∫
Rd

Zα,β,d(t, x− y)u1(y)dy, if β ∈ (1, 2].

(3.3)

When the initial conditions u0 and u1 are two constants, then by (2.19) and (2.21),
J0(t, x) does not depend on x and hence is denoted by J0(t) later on:

(3.4) J0(t) =

⎧⎨⎩u0FZα,β,d(t, ·)(0) = u0, if β ∈ (0, 1],

u0FZ∗
α,β,d(t, ·)(0) + u1FZα,β,d(t, ·)(0) = u0 + u1t, if β ∈ (1, 2].

Definition 3.1. A process u =
{
u(t, x) : t ≥ 0, x ∈ R

d
}

is called a random field
solution to (3.1) if it is adapted to the filtration {Ft}t≥0, jointly measurable with
respect to B

(
(0,∞)× Rd

)
×F , square integrable in the sense that∫ t

0

ds

∫
Rd

dy p(t− s, x− y)2E
[
ρ (u(s, y))

2
]
< ∞, for all t > 0 and x ∈ R

d,

and satisfies the following integral equation a.s.

(3.5) u(t, x) = J0(t, x) +

∫ t

0

∫
Rd

p(t− s, x− y)ρ (u(s, y))W (ds, dy),

for all t > 0 and x ∈ Rd, where J0(t, x) is given by (3.3) and the stochastic integral
on the right-hand side is the Walsh integral [50].

The existence and uniqueness of the mild solution to (3.1) with the bounded
initial conditions are well covered by the classical Dalang-Walsh theory; see [25,26,
50]. In that theory, Dalang’s condition usually refers to some simplified, but still
equivalent, conditions to

(3.6)

∫ t

0

∫
Rd

p(s, y)2dyds < ∞, for all t > 0.

Note that condition (3.6) is the necessary and sufficient condition for the existence
and uniqueness of a global solution for the corresponding linear equation, i.e., the
case when ρ(u) ≡ 1 in (3.1). Lemma 3.2 finds out the explicit form of Dalang’s
condition for (1.12) and (3.1), which extends Lemma 5.3 of [14] from the case
α ∈ (0, 2] and β ∈ (0, 2) to the case α > 0 and β ∈ (0, 2].

Lemma 3.2 (Dalang’s condition). For the SPDE (3.1), Dalang’s condition (3.6)
is equivalent to (1.16).
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Proof. By (2.20) and the Parseval-Plancherel identity, we have∫
Rd

|p(s, x)|2dx =
1

(2π)d

∫
Rd

|p̂(s, ξ)|2dξ

=
1

(2π)d

∫
Rd

s2(β+γ)−2E2
β,β+γ

(
− 1

2ν|ξ|
αsβ
)
dξ

= s2(β+γ)−2−βd/α 1

(2π)d
(2−1ν)−d/α

∫
Rd

E2
β,β+γ (−|η|α) dη,(3.7)

where in the last step we have used the change of variable ξ = (2−1νsβ)−1/αη.
Then clearly, Dalang’s condition (3.6) is equivalent to

(3.8)

⎧⎪⎨⎪⎩
2(β + γ)− 2− β

αd > −1 ⇐⇒ d < 2α+ α
β (2γ − 1),∫

Rd

E2
β,β+γ(−|ξ|α)dξ < ∞.

To characterize the second condition in (3.8), noting that E2
β,β+γ (−| · |) is locally

integrable, it suffices to know the asymptotic behavior of E2
β,β+γ(−|ξ|α) as |ξ| → ∞.

By Lemma 2.6, as |ξ| → ∞

Eβ,β+γ (−|ξ|α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ(γ)|ξ|α + o(|ξ|−α), β ∈ (0, 2),

cos
(√

|ξ|α − π(γ + 1)/2
)

|ξ|α(1+γ)/2
+

1

Γ(γ)|ξ|α + o
(
|ξ|−α

)
, β = 2.

(3.9)

Then, for β ∈ (0, 2), condition (3.8) is equivalent to{
d < 2α+ α

β (2γ − 1) and d < 2α, if γ > 0,

d < 2α− α
β , if γ = 0,

⇐⇒ d < 2α+
α

β
min {2γ − 1, 0} ,

where the equivalence for the case γ > 0 is straightforward by (3.9) since 1
Γ(γ) �= 0,

and for the case γ = 0, the equivalence follows from the facts that the first condition
d < 2α − α

β in (3.8) implies
∫
Rd E

2
β,β+γ(−|ξ|α)dξ < ∞ by (3.9) and that 1

Γ(γ) = 0

by (2.7).
For the case β = 2, by (3.9), we have as |ξ| → ∞,

E2
β,β+γ (−|ξ|α) =

cos2
(√

|ξ|α − π(γ + 1)/2
)

|ξ|α(1+γ)
+

1

Γ2(γ)|ξ|2α

+ 2
cos
(√

|ξ|α − π(γ + 1)/2
)

Γ(γ)|ξ|α(3+γ)/2
+ o
(
|ξ|−αmin( 3+γ

2 ,2)
)
.

Thus, if γ > 0, the second condition in (3.8) is equivalent to, for any ε > 0,∫
|ξ|>ε

cos2
(√

|ξ|α − π(γ + 1)/2
)

|ξ|α(1+γ)
dξ < ∞ and

∫
|ξ|>ε

1

|ξ|2α dξ < ∞,

where the first condition is equivalent to α(1 + γ) > d by Lemma B.1, and the
second one is 2α > d. If γ = 0, the second condition in (3.8) is equivalent to α > d.
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Therefore, when β = 2, we have that (3.8) is equivalent to⎧⎨⎩d<α(γ+ 3
2 ) and d<αmin{2, 1+γ}, if γ>0,

d<α(γ+ 3
2 ) and d<α, if γ=0,

⇐⇒ d<αmin {2, 1+γ} .

This completes the proof of Lemma 3.2. �
Under Dalang’s condition, it is routine (see, e.g., Theorem 13 of [26] or the

proof of Theorem 2.4 of [9]) to establish Theorem 3.3 regarding the existence and
uniqueness of the solution to (3.1), the proof of which will be left for the interested
readers.

Theorem 3.3. Under Dalang’s condition (1.16), if the initial conditions are
bounded, namely, u0 and u1 ∈ L∞(Rd), then there exists a unique (in the sense
of versions) random field solution u(t, x) to (3.1), which is L2(Ω)-continuous with
bounded p-th moments on any finite time interval:

(3.10) sup
0≤t≤T

sup
x∈Rd

E [|u(t, x)|p] < ∞, for all p ≥ 2 and T > 0.

Before the end of this section, we make some remarks:

Remark 3.4 (Rough initial data). The main focus of this paper is the exact moment
formula with constant initial condition. Theorem 3.3 presents the existence and
uniqueness of the solution in a slightly more general setting, which still falls in the
classical Dalang-Walsh theory. For the measure-valued initial conditions, such as
the Dirac delta initial condition, more efforts are needed and property (3.10) no
longer holds; see [7–9, 14, 17].

Remark 3.5 (Hölder regularity). In [14] and [11], the space-time Hölder regularity
of the solution to (1.12) has been obtained (in the case of α ∈ (0, 2] and β ∈ (0, 2)).
It is an interesting open problem to extend the Hölder regularity results in [14] and
[11] to the more general setting, namely, α > 0 and β ∈ (0, 2].

Remark 3.6 (Second moment comparison for nonlinear SPDEs). Let u(t, x) be the
solution to (3.1) as stated in Theorem 3.3. Suppose that ρ is Lipschitz continuous
and satisfies the following cone condition with some constants 0 ≤ λ ≤ λ:

λ|x| ≤ |ρ(x)| ≤ λ|x|, for all x ∈ R.

Then by denoting the right-hand side of (1.17) by fλ(t), the moment formula in
Theorem 1.1 can be extended directly to this case by the following moment com-
parison principle for the second moment:

fλ(t) ≤ E
[
u(t, x)2

]
≤ fλ(t).(3.11)

When the noise is white in time but colored in space (see (1.7)), the moment
comparison principle (for p ≥ 2) or more generally the stochastic comparison princi-
ple becomes much more involved and the parabolic nature of the equation will play
an important role. Hence, one can in principle only handle the case when β = 1.
One may check the work along this line in [16–18]. However, for the space-time
white noise case, the second moment comparison as in (3.11) comes for free. Note
that when the noise is colored in time (see (1.9)), to the best of our knowledge,
one can only handle the linear case, namely, ρ(u) = λu. In this case, the moment
comparison principle can be easily established by comparing the moments chaos by
chaos.

Licensed to Auburn Univ. Prepared on Thu May 30 22:21:32 EDT 2024 for download from IP 131.204.254.113.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4272 L. CHEN, Y. GUO, AND J. SONG

Remark 3.7 (Wiener chaos expansion). When ρ(u) = λu, instead of using Dalang-
Walsh theory, one can equivalently establish the solution to (1.12) using the Wiener
chaos expansion specified as follows: Set u0(t, x) = J0(t) (see (3.4)) and for n ≥ 1,

un(t, x)

= J0(t)+

n∑
k=1

∫
[0,t]k

∫
Rkd

gk(s1, . . . , sk, x1, . . . , xk; t, x)W (ds1, dx1) · · ·W (dsk, dxk),

where

gk(s1, . . . , sk, x1, . . . , xk; t, x)

=λkp(t−sk, x−xk)p(sk−sk−1, xk−xk−1) · · · p(s2−s1, x2−x1)J0(s1)1I{0<s1<···<sk<t}

=λk
k∏

r=1

p(sr+1 − sr, xr+1 − xr)J0(s1)1I{0<s1<···<sk<t},

(3.12)

where we use the convention sk+1 = t and xk+1 = x. Then, the mild solution has
the following so-called Wiener chaos representation:

(3.13) u(t, x) = J0(t) +

∞∑
k=1

Ik(fk(·; t, x)),

where fk(·; t, x) is the symmetrization of gk(·; t, x) given by, denoting by Pk the set
of all permutations of {1, . . . , k},
(3.14)

fk(s1, . . . , sk, x1, . . . , xk; t, x) =
1

k!

∑
σ∈Pk

gk(sσ(1), . . . , sσ(k), xσ(1), . . . , xσ(k); t, x)

and Ik(fk(·; t, x)) denotes the k-th multiple Wiener-Itô integral. We refer the in-
terested readers to [37] for more details.

4. Second moment formula and upper bounds for the p-th moments

In this section, we shall prove parts (a) and (b) of Theorem 1.1.

Proof of part (a) of Theorem 1.1. By the Itô-Walsh isometry, we have

E
[
u2(t, x)

]
= J2

0 (t) + λ2

∫ t

0

∫
Rd

p2(t− s, x− y)E
[
u2(s, y)

]
dsdy,

where J0(t) is given by (3.4). Note that due to the choice of the constant initial
conditions, the solution to the homogeneous equation does not depend on x, i.e.,
J0(t, x) = J0(t). Hence, through a standard Picard iteration, one can show that
the second moment E

(
u(t, x)2

)
does not depend on x. Let η(t) = E

(
u(t, x)2

)
.

Invoking (3.7), the above equation can be written as

(4.1) η(t) = J2
0 (t) + λ2Θ

∫ t

0

(t− s)θη(s)ds,

where θ and Θ are given in (1.14). Now we solve the fractional integral equation
(4.1) for β ∈ (0, 1] and for β ∈ (1, 2] separately.
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Case 1. When β ∈ (0, 1], we have J0(t) = u0 by (3.4) and thus (4.1) is equivalent
to ⎧⎨⎩

(
Dθ+1

0+ η
)
(t) = λ2ΘΓ(θ + 1)η(t) + (Dθ+1

0+ u2
0)(t),

η(0) = u2
0 and η(k)(0) = 0, for k = 1, 2, · · · , 
θ�,

where Dθ+1 is Riemann-Liouville derivative given in Definition 2.2. Using the
Caputo fractional derivative given in Definition 2.5, it can be written as⎧⎨⎩

(
CDθ+1

0+ η
)
(t) = λ2ΘΓ(θ + 1)η(t).

η(0) = u2
0 and η(k)(0) = 0, for k = 1, 2, . . . , 
θ�,

of which the solution is directly given by (2.4):

η(t) = u2
0Eθ+1

(
λ2t̂
)
.

This proves the first part of (1.17).

Case 2. When β ∈ (1, 2], we have J0(t) = u0 + u1t by (3.4) and (4.1) now is

(4.2) η(t) = u2
0 + 2u0u1t+ u2

1t
2 + λ2Θ

∫ t

0

(t− s)θη(s)ds.

Let f(t) := 2u0u1t+ u2
1t

2 then (4.1) can be written as

(4.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Dθ+1

0+ η)(t) = λ2ΘΓ(θ + 1)η(t) + (Dθ+1
0+ [u2

0 + f(·)])(t),

η(0) = u2
0, η

(1)(0) = 2u0u1, η
(2)(0) = 2u2

1,

η(k)(0) = 0, for k = 3, . . . , 
θ�.
In order to apply the formula (2.4), we will transform (4.3) into a Caputo fractional
differential equation. When θ + 1 ∈ (0, 1), by (2.2), we can write (4.3) as⎧⎨⎩

CDθ+1
0+ η(t) = λ2ΘΓ(θ + 1)η(t) + (Dθ+1

0+ f)(t).

η(0) = u2
0.

The solution now follows directly from (2.4):

η(t) = u2
0Eθ+1

(
λ2t̂
)
+

∫ t

0

(t− s)θEθ+1,θ+1

(
λ2ΘΓ(θ + 1)(t− s)θ+1

)
(Dθ+1

0+ f)(s)ds.

(4.4)

For the integral on the right-hand side, by (1.15) and Lemma 2.3 we have∫ t

0

(t− s)θEθ+1,θ+1

(
λ2ΘΓ(θ + 1)(t− s)θ+1

)
(Dθ+1

0+ f)(s)ds

=

∫ t

0

(t− s)θ
∞∑
k=0

(λ2ΘΓ(θ + 1))k

Γ((k + 1)(θ + 1))
(t− s)k(θ+1)(Dθ+1

0+ f)(s)ds

=

∞∑
k=0

(λ2ΘΓ(θ + 1))k
(
I
(θ+1)(k+1)
0+ Dθ+1

0+ f
)
(t)

=

∞∑
k=0

(λ2ΘΓ(θ + 1))k
(
I
k(θ+1)
0+ f

)
(t).
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The term
(
I
k(θ+1)
0+ f

)
(t) =

(
I
k(θ+1)
0+ (2u0u1s+ u2

1s
2)
)
(t) can be computed explicitly

noting that Lemma 2.4 yields
(4.5)(

I
k(θ+1)
0+ s

)
(t) =

tk(θ+1)+1

Γ(k(θ + 1) + 2)
and

(
I
k(θ+1)
0+ s2

)
(t) =

2tk(θ+1)+2

Γ(k(θ + 1) + 3)
.

Combining (4.4)–(4.5) and applying (1.15), we arrive at

η(t) = u2
0Eθ+1

(
λ2t̂
)
+ 2u0u1tEθ+1,2

(
λ2t̂
)
+ 2u2

1t
2Eθ+1,3

(
λ2t̂
)
.

This proves the second part of (1.17) for θ + 1 ∈ (0, 1). For the other two cases
θ+1 ∈ [1, 2) and θ+1 ≥ 2, one can calculate in a similar way and prove the desired
result. Finally, (1.18) is a direct consequence of Lemma 2.6. This completes the
proof of part (a) of Theorem 1.1.

�

Remark 4.1 (Another approach). Alternatively, one can also solve (4.1) directly by
an application of Lemma B.2 as follows:

η(t) = J2
0 (t) +

∫ t

0

J2
0 (s)K(t− s)ds,

where J0(t) is given in (3.4) and the resolvent kernel function K (·) is given by

K(t) = λ2ΘΓ(θ + 1)tθEθ+1,θ+1

(
λ2t̂
)
.

Thus we have, denoting A = λ2ΘΓ(θ + 1),

η(t) = J2
0 (t) +A

∫ t

0

J2
0 (s)(t− s)θEθ+1,θ+1

(
A(t− s)θ+1

)
ds.

When J0(t) = u0, we have by the definition (1.15) of Ea,b,

η(t) = u2
0 + u2

0

∞∑
k=0

Ak+1

Γ((θ + 1)(k + 1))

∫ t

0

(t− s)(θ+1)k+θds

= u2
0 + u2

0

∞∑
k=0

Ak+1t(θ+1)(k+1)

Γ((θ + 1)(k + 1) + 1)
= u2

0 + u2
0

∞∑
k=1

Akt(θ+1)k

Γ ((θ + 1)k + 1)

= u2
0Eθ+1

(
λ2t̂
)
.

This proves the equality of (1.17) for β ∈ (0, 1]. Applying similar computations to
the case J0(t) = u0 + u1t, we can justify the second part of (1.17) for β ∈ (1, 2].
Indeed, the p-th moment upper bounds will be obtained using this approach in the
next proof.

Proof of part (b) of Theorem 1.1. Fix an arbitrary p ≥ 2. By (3.5) we have

‖u(t, x)‖p ≤ |J0(t)|+
(
E

[∣∣∣∣∫ t

0

∫
Rd

p(t− s, x− y)λu(s, y)W (ds, dy)

∣∣∣∣p
])1/p

.

Applying the Burkholder-Davis-Gundy inequality, we have

‖u(t, x)‖p ≤ |J0(t)|+ Cp

(
E

[(∫ t

0

∫
Rd

p2(t− s, x− y)λ2u2(s, y)dsdy

)p/2
])1/p

,
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where Cp is the universal constant in the Burkholder-Davis-Gundy inequality satis-
fying Cp ∈ (0, 2

√
p) and Cp = (2+ o(1))

√
p as p → ∞ (see [4,23]). By Minkowski’s

inequality, we get

‖u(t, x)‖p ≤ |J0(t)|+ 2
√
p

(∫ t

0

∫
Rd

λ2p2(t− s, x− y)‖u(s, y)‖2pdsdy
)1/2

.

Denote ψ(t) = ‖u(t, x)‖2p, which does not depend on x since the solution is station-
ary. Recall the definitions of θ and Θ in (1.14). Hence, the above integral inequality
can be rewritten as

ψ(t) ≤ 2

(
J2
0 (t) + 4pλ2Θ

∫ t

0

(t− s)θψ(s)ds

)
.

Applying Lemma B.2, we have

ψ(t) ≤ 2J2
0 (t) + 2

∫ t

0

J2
0 (s)K(t− s)ds,

where
K(t) = 8pλ2ΘΓ(θ + 1)tθEθ+1,θ+1

(
8pλ2t̂

)
.

Then, one can apply the same computations as those in Remark 4.1 to simplify the
above ds integral in order to obtain (1.19). Finally, (1.21a) and (1.21b) follow from
Lemma 2.6 directly. This proves part (b) of Theorem 1.1. �

5. Lower bounds for the p-th moments

Compared with the upper bound for the p-th moment, the computation for the
lower bound is more involved. The methodology used in this section is inspired by
the recent work of Hu and Wang [38]. Some ideas are originated from Dalang and
Mueller [27].

5.1. Nondegeneracy and positivity of the fundamental functions. In Propo-
sition 5.1, we prove a nondegeneracy property of the fundamental solutions, which
is tailored specially for the spatial white noise. Conditions for the fundamental
solutions to be nonnegative are given in Remark 5.3.

Proposition 5.1. For all ε > 0 and c > 2
√
2/ν, assuming either

(1) the fundamental solution p(·, ◦) is nonnegative and β ∈ (0, 2), or
(2) α = β = 2, γ = 0, and d = 1,

we have

(5.1)

∫
Bε(x)

p(t, a− y)p(s, b− y)dy ≥ Cε−d(ts)β+γ−1,

for all x ∈ Rd, s, t ∈
[
2
√

2/νεα/β , cεα/β
]
, and a, b ∈ Bε(x), where C > 0 is a

constant independent of (a, b, s, t, x, ε).

Proof. Denote the integral in (5.1) by I. We first estimate I under condition (1).
In this case, from (2.23), we see that

I =

∫
Bε(x)

p(t, a− y)p(s, b− y)dy =

∫
Bε(x)

π−d/2|y − a|−dtβ+γ−1h

(
|y − a|α
2α−1νtβ

)
× π−d/2|y − b|−dsβ+γ−1h

(
|y − b|α
2α−1νsβ

)
dy,
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where

h(x) := H2,1
2,3

(
x
∣∣∣ (1,1), (β+γ,β)

(d/2,α/2), (1,1), (1,α/2)

)
.

Set I := π−d (ts)
β+γ−1

I ′. Notice when β ∈ (0, 2), the fundamental solution p(t, x)
is a smooth function for t > 0 and x �= 0 and the support of p(t, x) is the whole space;
see Remark 2.11 for more details. Moreover, under the nonnegative assumption on

p(t, x), denoting A :=
[
2
√

2/ν, c
]
and using the change of variable y = εx′, we

have

I ′ ≥ inf
a,b∈Bε(x)

c1,c2∈A

∫
Bε(x)

|y − a|−dh

(
|y − a|α

2α−1νcβ1ε
α

)
× |y − b|−dh

(
|y − b|α

2α−1νcβ2ε
α

)
dy

= inf
a′,b′∈Bε(0)

c1,c2∈A

∫
Bε(0)

|y − a′|−dh

(
|y − a′|α

2α−1νcβ1ε
α

)
× |y − b′|−dh

(
|y − b′|α

2α−1νcβ2ε
α

)
dy

= ε−d inf
a′,b′∈Bε(0)

c1,c2∈A

∫
B1(0)

|x′ − a′/ε|−dh

(
|x′ − a′/ε|α

2α−1νcβ1

)

× |x′ − b′/ε|−dh

(
|x′ − b′/ε|α

2α−1νcβ2

)
dx′

≥ Cε−d,

for s = c2ε
α/β , t = c1ε

α/β ∈
[
2
√
2/νεα/β , cεα/β

]
, where

C = inf
a′,b′∈Bε(0)

c1,c2∈A

∫
B1(0)

|x′ − a′/ε|−dh

(
|x′ − a′/ε|α

2α−1νcβ1

)

× |x′ − b′/ε|−dh

(
|x′ − b′/ε|α

2α−1νcβ2

)
dx′

= inf
a′,b′∈B1(0)

c1,c2∈A

∫
B1(0)

|x′ − a′|−dh

(
|x′ − a′|α

2α−1νcβ1

)
×|x′ − b′|−dh

(
|x′ − b′|α

2α−1νcβ2

)
dx′ > 0.

This proves (5.1) under condition (1).

Now we assume condition (2). It is well known that when α = β = 2, γ = 0 and
d = 1,

p(t, x) =
1√
2ν

1I{|x|<
√

ν/2 t}.

For all a, b, x′ ∈ Bε(x) and 2
√
2/ν ε ≤ s, t ≤ cε, we have

1I{|x′−a|<
√

ν/2 t}1I{|x′−b|<
√

ν/2 s} ≡ 1.

Hence,

(5.2) I =

∫
Bε(x)

1

2ν
1I{|x′−a|<

√
ν/2 t}1I{|x′−b|<

√
ν/2 s}dx

′ =
ε

ν
≥ ε−1

νc2
ts,

where the inequality holds since 0 ≤ s, t ≤ c ε. This completes the proof of Propo-
sition 5.1. �
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Remark 5.2. The nondegeneracy in (5.1) provides a lower bound for the integral
of two Green’s functions, while the small ball nondegeneracy in [38] concerns the
integral of one single Green’s function and does not fit in the proof of lower bounds
for the white noise case (see Step 3 in the proof of Theorem 5.9). Moreover, we
omit the term “small ball” since the radius of Bε(x) is not required to be sufficiently
small.

Remark 5.3 (Nonnegativity of fundamental solutions). The nonnegativity of Green’s
functions associated with (1.12) was first proved in [13] for the case γ = 0, and was
later extended in [14, Theorem 4.6] to allow γ ≥ 0; see also Remark 1.2 of [10]. It
is known that the Green’s function is nonnegative in the following three cases:

(5.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1) α ∈ (0, 2], β ∈ (0, 1], γ ≥ 0, d ≥ 1;

(2) 1 < β < α ≤ 2, γ > 0, 1 ≤ d ≤ 3;

(3) 1 < β = α < 2, γ >
d+ 3

2
− β, 1 ≤ d ≤ 3.

5.2. Feynman diagram formula. In this part, we recall the Feynman Diagram
formula, which is useful to compute the expectation of products of multiple Wiener-
Itô integrals. We refer interested readers to Section 5.3 of [37] for more details about
the multiple Wiener-Itô integrals.

On the lattice Z2, we use (k, �) to denote a vertex, and an ordered pair
[(k1, �1), (k2, �2)] to denote a directed edge pointing from (k1, �1) to (k2, �2).

Definition 5.4. Let p ≥ 1 and �n = (n1, . . . , np) ∈ Np with |�n| = n1 + · · ·+ np be
given. A Feynman diagram is a directed graph D = (V,E) consisting of the set of
all vertices

V =
{
(k, �) : 1 ≤ k ≤ p, 1 ≤ � ≤ nk

}
and a set E of directed edges satisfying k1 < k2 if [(k1, �1) , (k2, �2)] ∈ E. A Feynman
diagram D = (V,E) is called admissible if each vertex is associated with one and
only one edge. The set of all admissible diagrams is denoted by D = D
n.

We shall provide a formula for E
[
In1

(h1) . . . Inp
(hp)

]
for square integrable func-

tions

hi :
(
R+ × R

d
)ni → R, i = 1, . . . , p,(5.4)

where Ini
(hi) refers to the ni-th multiple Wiener-Itô integral. In particular, given

an admissible Feynman diagram D ∈ D
n, for hi given in (5.4), denote

FD(h1, . . . , hp) =

∫
R

|�n|
+

∫
Rd|�n|

dtdx

p∏
i=1

hi

(
t(i,1), x(i,1); . . . ; t(i,ni), x(i,ni)

)
×

∏
[(k1,	1),(k2,	2)]∈E(D)

δ(t(k1,	1) − t(k2,	2))δ(x(k1,	1) − x(k2,	2)),

(5.5)

where we use the notation dtdx =
∏p

i=1

∏ni

ri=1 dt(i,ri)dx(i,ri). Then we have (see

[38, Theorem 5.3] and [37, Theorems 5.7 and 5.8]),

(5.6) E
[
In1

(h1) . . . Inp
(hp)

]
=
∑

D∈D�n

FD(h1, . . . , hp).
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A direct consequence of (5.6) is that E
[
In1

(h1) . . . Inp
(hp)

]
= 0 if |�n| = n1+ · · ·+np

is an odd integer, since the number of vertices in an admissible diagram must be
even.

In particular, for any t > 0 and x ∈ Rd, considering the multiple Wiener-Itô
integrals Ik (fk (·; t, x)) in the chaos expansion (3.13) for the solution u(t, x) with
fk given in (3.14) which is a symmetrization of gk in (3.12), we have the following
result (see [38, Theorem 5.4]):

Lemma 5.5. Let p ≥ 1 and �n = (n1, . . . , np) ∈ N
p be given. Fix arbitrary t > 0

and x1, . . . , xp ∈ R
d. Recall that fn(·; t, x) and gn(·; t, x) be given in (3.14) and

(3.12), respectively. Then

E

[
p∏

	=1

In�
(fn�

(·; t, x	))

]
=
∑

D∈D�n

FD
(
gn1

(·; t, x1) , . . . , gnp
(·; t, xp)

)
=
∑

D∈D�n

∫
[0,t]|�n|

∫
Rd|�n|

dtdx λ|
n|

×

⎛⎝ ∏
[(k1,l1),(k2,l2)]∈E(D)

δ(t(k1,l1) − t(k2,l2))δ(x(k1,l1) − x(k2,l2))

⎞⎠

×
(

p∏
i=1

J0
(
t(i,1)

)
1I{0<t(i,1)<···<t(i,ni)

<t}

ni∏
ri=1

p
(
t(i,ri+1)−t(i,ri), x(i,ri+1)−x(i,ri)

))
,

(5.7)

where we have used the convention that

(
t(i,ni+1), x(i,ni+1)

)
= (t, xi) for all i = 1, · · · p.(5.8)

Example 5.6. Let D1 (resp. D2) refer to the red (resp. blue) admissible Feynman
diagram in Figure 5.1. Under the setting of Lemma 5.5, let

Fi = FDi
(g1 (·; t, x) , g2 (·; t, x) , g2 (·; t, x) , g3 (·; t, x)) i = 1, 2.

Then we claim that F1 = 0 because its integrand contains the following factor:

1I{0<t(3,1)<t(3,2)<t}1I{0<t(3,2)<t(3,1)<t(2,2)<t}

which is identically equal to zero. Hence, due to the delta potentials and the
simplex conditions in (5.7), edges starting from one column should not cross with
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each other. This is the case for F2:

F2 =

∫
[0,t]4

dt(1,1)dt(2,1)dt(2,2)dt(3,2)

∫
R4d

dx(1,1)dx(2,1)dx(2,2)dx(3,2)

× J0
(
t(1,1)

)
1I{0<t(1,1)<t}pt−t(1,1)

(
x− x(1,1)

)
× J0

(
t(2,1)

)
1I{0<t(2,1)<t(2,2)<t}pt−t(2,2)

(
x− x(2,2)

)
pt(2,2)−t(2,1)

(
x(2,2) − x(2,1)

)
× J0

(
t(1,1)

)
1I{0<t(1,1)<t(3,2)<t}pt−t(3,2)

(
x− x(3,2)

)
pt(3,2)−t(1,1)

(
x(3,2) − x(1,1)

)
× J0

(
t(2,1)

)
1I{0<t(2,1)<t(2,2)<t(3,2)<t}

× pt−t(3,2)

(
x− x(3,2)

)
pt(3,2)−t(2,2)

(
x(3,2) − x(2,2)

)
pt(2,2)−t(2,1)

(
x(2,2) − x(2,1)

)
=

∫
[0,t]4

dt(1,1)dt(2,1)dt(2,2)dt(3,2)

∫
R4d

dx(1,1)dx(2,1)dx(2,2)dx(3,2)

× J2
0

(
t(1,1)

)
1I{0<t(1,1)<t(3,2)<t}pt−t(1,1)

(
x− x(1,1)

)
pt(3,2)−t(1,1)

(
x(3,2) − x(1,1)

)
× J2

0

(
t(2,1)

)
1I{0<t(2,1)<t(2,2)<t(3,2)<t}pt−t(2,2)

(
x− x(2,2)

)
× p2t−t(3,2)

(
x− x(3,2)

)
pt(3,2)−t(2,2)

(
x(3,2) − x(2,2)

)
p2t(2,2)−t(2,1)

(
x(2,2) − x(2,1)

)
.

Note that the original 2×8-multiple integral has been collapsed to the above 2×4-
multiple integral. The remaining variables are the roots of all edges in E(D).

k

�

1 2 3 4

n1 = 1

n2 = n3 = 2

n4 = 3

4

(1, 1)

(2, 2)

(2, 1) (3, 1)

(3, 2)

(4, 1)

(4, 2)

(4, 3)

(1, 2)

(2, 3) (3, 3)

(4, 4)

D1

D2

I1(h1) I2(h2) I2(h3) I3(h4)

= p

Figure 5.1. Two admissible (red D1 and blue D2) Feynman di-
agrams for the case when p = 4, �n = (1, 2, 2, 3) and |�n| = 8; see
Example 5.6. Convention (5.8) applies at the gray vertices in the
settings of Lemma 5.5.

Definition 5.7. For any m ∈ N and p ∈ 2N, we say that �n = (n1, . . . , np) is a
balanced partition of 2m if

(1) |�n| = 2m;
(2) ni ∈ {mp,mp + 1} for all i = 1, . . . , p, where mp := 
2m/p�;
(3) n1 + · · ·+ np/2 = m;
(4) rp ∈ [0, p) is the remainder of 2m/p.
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Moreover, under this setting, an admissible Feynman diagram D = (V,E) is called
a balanced diagram provided

[(k1, �1), (k2, �2)] ∈ E(D) =⇒ �1 = �2 and k1 ≤ p/2 < k2.

The set of all balanced diagrams is denoted by D=

n . It is clear that D

=

n ⊂ D
n.

It is straightforward to show the existence of a balanced partition, which is
however not unique in general. Let us check a few examples:

Example 5.8.

(1) In Figure 5.1, we have p = m = 4. The partition �n = (1, 2, 2, 3) is not a balanced
partition. Indeed, for this example, the only balanced partition is �n = (2, 2, 2, 2).
(2) If p = 4 and m = 3, the following partitions are all balanced:

(1, 2, 2, 1) , (2, 1, 2, 1) , (1, 2, 1, 2) .

However, (1, 1, 2, 2) is not balanced.
(3) If p = 6 and m = 7, it is easy to check that �n = (3, 2, 2, 2, 3, 2) is a balanced
partition, upon which a balanced diagram is given; see Figure 5.2.

k

�

1 2 3 4 5 6

1

mp = 2

mp + 1 = 3

4

(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)

(3, 1)

(3, 2)

(4, 1)

(4, 2)

(5, 1)

(5, 2)

(5, 3)

(6, 1)

(6, 2)

�n = (3, 2, 2, 2, 3, 2)

rp = 2

mpp

|‖
12

(1, 4)

(2, 3) (3, 3) (4, 3)

(5, 4)

(6, 3)

= p

p/2 = 3 columns p/2 = 3 columns

m = 7 starting vertices m = 7 ending vertices

Figure 5.2. One example of the balanced partition in case of
m = 7 and p = 6 with a balanced diagram (all edges are horizontal
starting from the left half of the vertices pointing to the right half).
The grayed-out vertices correspond to the convention (5.8).

5.3. Proof of the lower bounds. In this subsection, we prove part (c) of Theorem
1.1, i.e., we derive a lower bound for E [|u(t, x)|p] which is consistent with the upper
bound obtained in part (b) of Theorem 1.1. We restate part (c) of Theorem 1.1 in
Theorem 5.9:

Theorem 5.9. Assume that

(1) either β ∈ (0, 2) and the fundamental function p(t, x) is nonnegative or α =
β = 2 and γ = 0;
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(2) the initial position u0 is strictly positive and the initial velocity u1 is nonnega-
tive;
(3) Dalang’s condition (1.16) is satisfied.

Then we have for all t > 0, x ∈ R
d, and p ≥ 2 such that t p

1
θ+1 is sufficiently large

(recall that θ is given in (1.14)), there exists a constant c that does not depend on
(t, x, p) such that

(5.9) E [|u(t, x)|p] ≥ up
0 exp

(
c|λ| 2

θ+1 p1+
1

θ+1 t
)
.

Proof. The proof is based on the Feynman diagram formula for the p-th moments
and the non-degeneracy property of the Green’s function – Proposition 5.1, which
is inspired by [38, Theorem 3.6]. In the following, we will first consider the case
when p ≥ 2 is an even integer. The extension to the general case p ≥ 2 will be done
at the end of the proof. Now choose an arbitrary p ∈ 2N and let t > 0 and x ∈ Rd

be fixed. By (3.13), we have

E [|u(t, x)|p] = E

⎡⎣ p∏
j=1

∞∑
nj=0

Inj
(fnj

(·, t, x))

⎤⎦
=

∞∑
n1=0

· · ·
∞∑

np=0

E

[
In1

(fn1
(·, t, x)) . . . Inp

(fnp
(·, t, x))

]
=

∞∑
m=0

∑

n∈N

p

|
n|=2m

∑
D∈D�n

FD
(
gn1

(·; t, x) , . . . , gnp
(·; t, x)

)
,(5.10)

where we have used the convention that I0(f0(·, t, x)) = J0(t). We will find the
lower bound in three steps:

Step 1. We first take care of the three summations in (5.10):

(i) in the first summation of (5.10), we require m ≥ p/2;
(ii) in the second summation of (5.10), we only consider the balanced partitions

of 2m;
(iii) in the third summation of (5.10), we restrict us to the balanced diagrams

D
=

n .

Applying the Feynman diagram formula in Lemma 5.5 and noting that infs∈[0,t]J0(s)
≥ u0 (see (3.4)), we have

E [|u(t, x)|p] ≥ up
0

∞∑
m=p/2

∑

n∈N

p

|
n|=2m

n is balanced

∑
D∈D

=
�n

λ2m I0,(5.11)

with

I0 :=

∫
[0,t]2m

∫
R2md

⎛⎝ ∏
[(k1,l1),(k2,l2)]∈E(D)

δ
(
t(k1,l1) − t(k2,l2)

)
δ
(
x(k1,l1) − x(k2,l2)

)⎞⎠
×

p∏
i=1

1I{0<t(i,1)<···<t(i,ni)
<t}

ni∏
ri=1

p
(
t(i,ri+1) − t(i,ri), x(i,ri+1) − x(i,ri)

)
dtdx,

(5.12)
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where we have used the assumption that p(t, x) is nonnegative and the conven-
tion (5.8).

One may check Figure 5.2 for some examples of the selected Feynman diagrams.
Recall that mp = 
2m/p� and rp is the remainder of 2m/p (see Definition 5.7),
namely,

2m = mp × p+ rp, with 0 ≤ rp < p.

It is easy to see that rp has to be an even integer. With these restrictions, for each
fixed m ≥ p/2, one can check that the total number of diagrams satisfying (ii) and
(iii) is at least ((p/2)!)mp × (rp/2)!.

Step 2. Now we proceed to shrink the integral region for the dt-integral of I0 in

(5.12) as follows: Denote L = t
mp+1 , ti =

(2i−1)t
2(mp+1) , ai = ti − L/4 and bi = ti + L/4

for i = 1, . . . ,mp + 1. Let Ii = [ai, bi]. Then these intervals Ii are disjoint with
length L/2; See Figure 5.3 for an illustration.

t

0 L 2L 3L

t

4L

I1

1/2L

I2

3/2L

I3

5/2L

I4

7/2L
a1 b1 a2 b2 a3 b3 b4 b4

Figure 5.3. Some illustrations for Step 2 in the proof of Theorem
5.9 with mp = 4

For the integral with respect to time variables in (5.12), we only integrate on the
region where for each i ∈ {1, . . . , p}, t(i,ri) is in Iri for 1 ≤ ri ≤ ni, and hence

(5.13)
t

2(mp + 1)
=

1

2
L ≤ t(i,ri+1) − t(i,ri) ≤

3

2
L =

3t

2(mp + 1)
.

Then, for each integer m ≥ p/2, by choosing

(5.14) ε :=

(√
ν

2

pt

16m

)β/α

,

we have that

(5.15) t(i,ri+1) − t(i,ri) ∈
[
2

√
2

ν
εα/β , 12

√
2

ν
εα/β

]
, i = 1, . . . , p.

Step 3. Now we study the spatial integral portion of I0 in (5.12), which is equal to∫
R2md

dx

p∏
i=1

ni∏
ri=1

p
(
t(i,ri+1) − t(i,ri), x(i,ri+1) − x(i,ri)

)
×

⎛⎝ ∏
[(k1,l1),(k2,l2)]∈E(D)

δ(x(k1,l1) − x(k2,l2))

⎞⎠ .

It is bounded from below if one replaces the integral region R2md by
(
B2

ε (x)
)m

for any ε > 0. In particular, by Step 2, we see that t satisfies t(i,ri) ∈ Iri for
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1 ≤ ri ≤ ni, 1 ≤ i ≤ p, i.e., (5.15) holds true. Hence, we can apply Proposition 5.1

with ε given in (5.14) and c = 12
√
2/ν to bound the above integral from below as

follows:

≥ Cm (pt/m)
−βmd/α

p∏
i=1

ni∏
ri=1

|t(i,ri+1) − t(i,ri)|β+γ−1.(5.16)

Note that here we have used the convention (5.8) with the critical choice of all xi

being the same. Therefore, we can find a lower bound of I0 in (5.12) with only time
integral:

I0 ≥ Cm (pt/m)−βmd/α
∫
[0,t]2m

dt

p∏
i=1

ni∏
ri=1

|t(i,ri+1) − t(i,ri)|β+γ−11I{t(i,ri)∈Iri}

×

⎛⎝ ∏
[(k1,l1),(k2,l2)]∈E(D)

δ(t(k1,l1) − t(k2,l2))

⎞⎠ .

(5.17)

Step 4. Finally, we will carry out the remaining dt-integral in (5.17) and complete
the proof. We will use C to denote a generic constant that does not depend on
(t, p,m) and whose value may change at each appearance. Now denote the integral
in (5.17) by I, which can be bounded from below as follows:

I ≥ CmL2m(β+γ−1)

∫
[0,t]2m

dt

p∏
i=1

ni∏
ri=1

1I{t(i,ri)∈Iri}

×

⎛⎝ ∏
[(k1,l1),(k2,l2)]∈E(D)

δ(t(k1,l1) − t(k2,l2))

⎞⎠
= CmL2m(β+γ−1)

(
L

2

)m

= Cm

(
t

mp

)m(2β+2γ−1)

.

Replace the space-time integral in (5.11) by the above lower bound, together with
the factor in front of the integral in (5.17), to see that

E [|u(t, x)|p]≥up
0

∑
m≥p/2

∑

n∈N

p

|
n|=2m

n is balanced

∑
D∈D=

�n

Cmλ2m

(
pt

m

)−βdm/α (
t

mp

)m(2β+2γ−1)

≥up
0

∑
m≥p/2

Cmλ2m

(
pt

m

)−βdm/α(
t

mp

)m(2β+2γ−1)

((p/2)!)
mp×(rp/2)!,(5.18)

where we have used the fact that there are at least ((p/2)!)
mp × (rp/2)! terms in

the double summations.
Thanks to the following well known bounds to the Gamma function, which is

related to the Stirling formula (see, e.g., 5.1.10 on p. 141 of [45])
√
2πn

(n
e

)n
< n! < 2

√
2πn

(n
e

)n
, for all n ≥ 1,(5.19)

we see that up to a constant, one can replace n! by
√
2πn (n/e)n. Hence, by (5.19)

and the fact (rp/p)
rp/2 ≥ e−p/2e ≥ Cm for m ≥ p/2 if we choose C ≤ e−1/e, we
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have for m ≥ p/2,

((p/2)!)mp · (rp/2)! ≥ Cm (p)(p mp)/2 · (p)rp/2 (rp/p)rp/2

≥ Cmp
p×mp+rp

2 = Cmpm.

Then bound t/mp in (5.18) from below by pt/(2m) to see that

E [|u(t, x)|p] ≥ up
0

∑
m≥p/2

Cmλ2m

(
pt

m

)−βdm/α (
pt

2m

)m(2β+2γ−1)

pm

≥ up
0

∑
m≥p/2

⎛⎝
(
C|λ| 2

θ+1 p1+
1

θ+1 t
)m

m!

⎞⎠(θ+1)

.(5.20)

Let n :=C|λ| 2
θ+1 p1+

1
θ+1 t. If p

1
θ+1 t is sufficiently large such that p

1
θ+1 t≥ 1

2C
−1|λ|− 2

θ+1 ,
clearly we have n ≥ p/2. Noting θ + 1 > 0, for p ∈ 2N, we get

E [|u(t, x)|p] ≥ up
0

∑
m≥p/2

(
nm

m!

)(θ+1)

≥ up
0

∑
m≥n

(
nm

m!

)(θ+1)

≥ up
0 exp

(
c|λ| 2

θ+1 p1+
1

θ+1 t
)
,

where the third inequality follows from Lemma B.4.

Finally, for a real number p ≥ 2, let p∗ be the biggest even integer that is not
greater than p. By Jensen’s inequality, we have

E [|u(t, x)|p] ≥ (E[|u(t, x)|p∗])p/p
∗
≥ up

0 exp
(
(1/2)

1
θ+1 c|λ| 2

θ+1 p1+
1

θ+1 t
)
.

This completes the proof of Theorem 5.9. �

For the wave equation (1.3), a more careful computation in the proof of The-
orem 5.9 together with (1.20) provides a relatively precise estimation as given in
Proposition 5.10:

Proposition 5.10. For the wave equation (1.3) with constant initial conditions,
we have that

C1 ≤ lim inf
pt2→∞

t−1
p logE [|u(t, x)|p] ≤ lim sup

pt2→∞
t−1
p logE [|u(t, x)|p] ≤ C2,

where C1 and C2 are given in (1.11), and the lower bound holds provided addition-
ally that u0 > 0 and u1 ≥ 0. In particular, by freezing t or p, one obtains the
inequalities in (1.10).

Proof. In the SWE case where α = β = 2, γ = 0, (5.14) and (5.15) become

ε :=

√
ν

2

pt

16m
and t(i,ri+1) − t(i,ri) ∈

[
2

√
2

ν
ε, 12

√
2

ν
ε

]
,

i = 1, . . . , p, respectively.

By (5.2), the constant C in (5.1) is equal to 2−112−2. Hence, C in both (5.16) and
(5.17) is equal to 3−2(2ν)−1/2. Noting (5.13), the integral in (5.17), denoted by I,
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can be bounded from below by

I≥(L/2)2m
∫
[0,t]2m

dt

p∏
i=1

ni∏
ri=1

1I{t(i,ri)∈Iri}

⎛⎝ ∏
[(k1,l1),(k2,l2)]∈E(D)

δ(t(k1,l1)−t(k2,l2))

⎞⎠
= 4−mL2m

(
L

2

)m

≥ 64−m

(
t

mp

)3m

,

where the last inequality holds since for m ≥ p/2, L
2 = t

2(mp+1) ≥ t
4mp

. Replacing

the term I0 in (5.11) by the above lower bound, together with the factor in front
of the integral in (5.17), we see that, for p ∈ 2N,

E [|u(t, x)|p] ≥ up
0

∑
m≥p/2

∑

n∈N

p

|
n|=2m

n is balanced

∑
D∈D=

�n

(
1

242
√
2ν

)m

λ2m

(
pt

m

)−m(
t

mp

)3m

≥ up
0

∑
m≥p/2

(
1

242
√
2ν

)m

λ2m

(
pt

m

)−m(
t

mp

)3m

((p/2)!)mp × (rp/2)!.

(5.21)

By (5.19) and the fact that (rp/p)
rp/2 ≥ e−p/(2e), we have that

((p/2)!)mp × (rp/2)! ≥ (2e)−m (p)(p mp)/2 × (p)rp/2 (rp/p)
rp/2

≥ (2e)−me−p/(2e)p(p×mp+rp)/2 = (2e)−me−p/(2e)pm.

Then because t
mp

≥ pt
2m , the estimate in (5.21) becomes

E [|u(t, x)|p] ≥
(
u0 e

−1/(2e)
)p ∑

m≥p/2

(
1

2× 242e
√
2ν

)m

λ2m

(
pt

m

)−m(
t

mp

)3m

pm

≥
(
u0 e

−1/(2e)
)p ∑

m≥p/2

(
1

962e
√
2ν

)m

λ2m

(
pt

m

)2m

pm

≥
(
u0 e

−1/(2e)
)p ∑

m≥p/2

((
C|λ|p3/2t

)m
m!

)2

,

where the last inequality is obtained through mm ≤ emm! and

C = 96−1e−3/2(2ν)−1/4.

Let n := C|λ|p3/2t. If p1/2t is sufficiently large, we must have p/2 ≤ n. Hence, for
p ∈ 2N,

E [|u(t, x)|p] ≥
(
u0 e

−1/(2e)
)p ∑

m≥n

(
nm

m!

)2

≥
(
u0 e

−1/(2e)
)p

exp
(
cν−1/4|λ|p3/2t

)
,

where the last inequality follows from Lemma B.4 with c being any positive number
strictly less than 2C = 48−1e−3/22−1/4. Similarly as in the end of the proof of
Theorem 5.9, for a real number p ≥ 2 with p∗ being the biggest even integer that
is not greater than p, we have

E [|u(t, x)|p] ≥
(
E[|u(t, x)|p∗

]
)p/p∗

≥
(
u0 e

−1/(2e)
)p

exp
(
(1/2)1/2cν−1/4|λ|p3/2t

)
.
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The upper bound C2 follows directly from (1.20) and Example A.2. This com-
pletes the proof of Proposition 5.10. �

Appendix A. Examples and discussions

In this section, we give some concrete examples for the main result Theorem
1.1. We will use C1 and C2 to denote generic constants which are independent of t
and p.

Example A.1 (SHE). When α = 2, β = 1, γ = 0 and d = 1, equation (1.12)
reduces to SHE (1.2). In this case, Dalang’s condition (1.16) is satisfied and

θ = −1/2, Θ =
1

2π

∫
R

e−ν|ξ|2dξ =
1√
4πν

, t̂ =

√
t√
4ν

, and tp = p3t.

(1) Second moment formula: The second moment formula (1.17) reduces to

(A.1) E[u2(t, x)] = u2
0 E1/2

(
λ2

√
4ν

t1/2
)

= 2u2
0 e

λ4t
4ν Φ

(
λ2t1/2√

2ν

)
,

where we have applied (2.5). This formula recovers the one obtained in [9] as a
special case; see Corollary 2.5. ibid.

(2) Second moment Lyapunov exponent: From (A.1), we immediately see that

lim
t→∞

1

t
logE[u(t, x)2] =

λ4

4ν
.(A.2)

Results obtained by Balan and Song [3] also reduce to this special case with the
exact second moment Lyapunov exponent being equal to 1/4 (where λ = 1 and
ν = 1); see Remark 1.6 ibid.

(3) Moment asymptotics: Because the heat kernel is nonnegative, we can com-
bine the asymptotics in (1.21) and (1.23) to conclude that

C1p
3 ≤ lim inf

t→∞

1

t
logE[|u(t, x)|p] ≤ lim sup

t→∞

1

t
logE[|u(t, x)|p] ≤ C2p

3, p ≥ 2,

(A.3a)

C1 t ≤ lim inf
p→∞

1

p3
logE[|u(t, x)|p] ≤ lim sup

p→∞
p−3 logE[|u(t, x)|p] ≤ C2 t, t > 0.

(A.3b)

These asymptotics are consistent with the exact asymptotics obtained by X. Chen;
see [19, Theorem 1.1, Remark 3.1].

Example A.2 (SWE). When α = 2, β = 2, γ = 0 and d = 1, equation (1.12)
reduces to SWE (1.3). In this case, J0(t) = u0 + u1t, Dalang’s condition (1.16) is
satisfied, and

θ = 1, Θ =
1

π

∫ ∞

0

sin
(√

ν/2 ξ
)2

(ν/2) ξ2
dξ =

1√
2ν

, t̂ =
t2√
2ν

, and tp = p3/2t,
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where the first equality in the equation of Θ follows from (1.14), (1.15), and the
fact that

E2,2

(
−2−1ν|ξ|2

)
=

∞∑
k=0

(−1)k
(
2−1ν|ξ|2

)k
Γ(2k + 2)

=

∞∑
k=0

(−1)k
(√

ν/2|ξ|
)2k

(2k + 1)!

=
1√

ν/2|ξ|

∞∑
k=0

(−1)k
(√

ν/2|ξ|
)2k+1

(2k + 1)!
=

sin
(√

ν/2|ξ|
)

√
ν/2|ξ|

,

and the second equality in the equation of Θ is obtained via Lemma B.3.

(1) Second moment formula: The second moment formula (1.17) becomes

E
[
u2(t, x)

]
= u2

0E2

(
λ2t2√
2ν

)
+ 2u0u1tE2,2

(
λ2t2√
2ν

)
+ 2u2

1t
2E2,3

(
λ2t2√
2ν

)
.

Now using (2.6) and the special cases in (2.5), we see that

E
[
u2(t, x)

]
= −23/2ν1/2u2

1

λ2
+

(
u2
0 +

23/2ν1/2u2
1

λ2

)
cosh

(
|λ|t

(2ν)1/4

)
+
25/4ν1/4u0u1

|λ| sinh

(
|λ|t

(2ν)1/4

)
,

(A.4)

which recovers [7, Corollary 1.1].1

(2) Second moment Lyapunov exponent: From (A.4), we immediately see that

lim
t→∞

1

t
logE[u(t, x)2] =

|λ|
(2ν)1/4

,(A.5)

which has also been obtained by Balan and Song in [3, Remark 1.6].

(3) Moment asymptotics: Since the fundamental solution is nonnegative, com-
bining the asymptotics in (1.21) and (1.23) shows (1.10); see Proposition 5.10 for
more details. The upper bound in the large-time asymptotics (1.10a) is consistent
with [22, Theorem 3.1] and [7, Theorem 2.7].

Example A.3 (SFHE). When α > 0, β = 1, γ = 0 and d = 1, equation (1.12)
becomes the following one-dimensional stochastic fractional heat equation:

(A.6) (SFHE)

⎧⎨⎩
(

∂

∂t
+

ν

2
(−Δ)

α/2

)
u(t, x) = λu(t, x)Ẇ (t, x), t > 0, x ∈ R,

u(0, ·) = u0.

1There is a typo in the paper [7] where the fundamental solution for the wave kernel should be
1
2κ

1I[−κt,κt](x) instead of 1
2
1I[−κt,κt](x); see the equation after (1.2) ibid. If one sets κ = 1 ibid.

or equivalently sets ν = 2 in the current paper, the results should coincide.
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In this case, Dalang’s condition (1.16) becomes α > d = 1. For α > 1, we have

θ =− 1

α
,

Θα,ν =
1

2π

∫
R

e−ν|ξ|αdξ =
Γ (1 + 1/α)

ν1/απ
,

t̂ =
Γ (1− 1/α) Γ (1 + 1/α)

ν1/απ
t1−1/α =

(
ν1/αα sin (π/α)

)−1

t1−1/α,

tp =p1+α/(α−1)t,

where in computing t̂ we have use the reflection formula (2.8).

(1) Second moment formula: The second moment formula (1.17) reduces to

(A.7) E[u2(t, x)] = u2
0 E1−1/α

(
λ2

ν1/αα sin (π/α)
t1−1/α

)
.

In [9], this equation with α ∈ (1, 2] has been studied with a nonhomogeneous initial
condition.

(2) Second moment Lyapunov exponent: From (A.7), we immediately see that

lim
t→∞

1

t
E[|u(t, x)|2] =

(
λ2

ν1/αα sin (π/α)

)α/(α−1)

, α > 1;(A.8)

see Figure A.1 for a plot of this expression as a function of α.
(3) Moment asymptotics: If α ∈ (1, 2], the fundamental solution is nonnegative

(see Remark 5.3), then the asymptotics in (1.21) and (1.23) reduce to

C1p
2α−1
α−1 ≤ lim inf

t→∞

logE[|u(t, x)|p]
t

≤ lim sup
t→∞

logE[|u(t, x)|p]
t

≤ C2p
2α−1
α−1 , p ≥ 2,

(A.9a)

C1 t ≤ lim inf
p→∞

logE[|u(t, x)|p]
p

2α−1
α−1

≤ lim sup
p→∞

logE[|u(t, x)|p]
p

2α−1
α−1

≤ C2 t, t > 0.

(A.9b)

The upper bound in the large-time asymptotics (A.9a) is consistent with [9, Theo-
rem 3.4]. In [20, Theorem 1.1], Chen et al obtained the exact large-time asymptotics
when the noise is colored in the sense of (1.9). Note also that only the lower bounds
in (A.9a) and (A.9b) require the nonnegativity of the fundamental solution. The
upper bounds still hold true for all α > 1.

Example A.4 (SFWE). For the stochastic fractional wave equation
(A.10)

(SFWE)

⎧⎪⎨⎪⎩
(

∂2

∂t2
+

ν

2
(−Δ)α/2

)
u(t, x) = λu(t, x)Ẇ (t, x), t > 0, x ∈ R,

u(0, ·) = u0,
∂

∂t
u(0, ·) = u1,
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0 1 2 3 5 7 9

1/π
SHE: 1/

√
4π —–

SWE: 1/
√

2

α

Θα,1

SFHE: π−1Γ (1 + 1/α)

SFWE: 21−1/απ−1α−1 cos (π/α) Γ (2(1/α− 1)

1

1.
34
26 2 3 5

0

SHE: 1/4

SWE: 2−
1/4

1.1513

1.5

α

Second moment Lyapunov exponent

SFHE: [α sin (π/α)]
α

1−α

SFWE: 2
1−α
2−3α [α sin (π/α)]

α
2−3α

Figure A.1. Plots of both Θα,ν and the second moment Lyapunov
exponents as functions of α ∈ (1,∞) with ν = λ = 1 for both SFHE
in Example A.3 and SFWE in Example A.4. For the second mo-
ment Lyapunov exponents, two curves intersect at (1.3426, 1.1513)
via some numerical solver.

i.e., α > 0, β = 2, γ = 0 and d = 1, Dalang’s condition (1.16) becomes α > 1, and
the quantities in (1.14) reduce to

θ =2(1− 1/α),

Θα,ν =
1

π

∫ ∞

0

sin2
(√

ν/2 ξα/2
)

(ν/2) ξα
dξ =

22−1/α cos (π/α) Γ (2 (1/α− 1))

ν1/απα
,

t̂ =
22−1/α cos (π/α) Γ (3− 2/α) Γ (2/α− 2)

ν1/απα
t3−2/α

=
22−1/α cos (π/α)

ν1/α sin (2π/α)α
t3−2/α =

21−1/α

ν1/α sin (π/α)α
t3−2/α,

tp =p1+α/(3α−2)t,
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where we have applied Lemma B.3 and the reflection formula (2.8) in computing
Θ and t̂, respectively.

(1) Second moment formula: By (1.17), the second moment formula is

E
[
u2(t, x)

]
=u2

0 E3−2/α

(
21−1/αλ2

ν1/α sin (π/α)α
t3−2/α

)
+ 2u0u1t E3−2/α,2

(
21−1/αλ2

ν1/α sin (π/α)α
t3−2/α

)
+ 2u2

1t
2 E3−2/α,3

(
21−1/αλ2

ν1/α sin (π/α)α
t3−2/α

)
.

(A.11)

(2) Second moment Lyapunov exponent: From (A.11), we immediately see that

lim
t→∞

1

t
logE

[
u(t, x)2

]
=

(
21−1/αλ2

ν1/α sin (π/α)α

)α/(3α−2)

, α > 1;(A.12)

see Figure A.1 for a plot of this expression as a function of α.
(3) Moment asymptotics: The asymptotics in (1.21) shows that

lim sup
t→∞

1

t
logE[|u(t, x)|p] ≤ C2p

4α−2
3α−2 , p ≥ 2,(A.13a)

lim sup
p→∞

p−
4α−2
3α−2 logE[|u(t, x)|p] ≤ C2 t, t > 0.(A.13b)

The large-time asymptotics in (A.13a) is consistent with Proposition 4.1 of [49].
Since we don’t know if the fundamental solution is nonnegative, we cannot apply
the lower asymptotics in (1.23). To the best of our knowledge, formulas (A.11) and
(A.12) and the limit (A.13) are new.

Example A.5. The following one-parameter family of SPDEs

(A.14)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
∂β
t − ν

2

∂2

∂x2

)
u(t, x) = I

�β�−β
t

[
λu(t, x)Ẇ (t, x)

]
, t > 0, x ∈ R,

u(0, ·) = u0, if β ∈ (0, 1],

u(0, ·) = u0,
∂

∂t
u(0, ·) = u1, if β ∈ (1, 2)

has been studied in [6]. This is the case when d = 1, α = 2, β ∈ (0, 2) and
γ = 
β� − β and the upper bound of the large-time asymptotics was obtained
(ibid.). It can be easily checked that Dalang’s condition (1.16) holds true for all
β ∈ (0, 2) in this case. The quantities in (1.14) reduce to

θ = 2 (
β� − 1)− β/2, tp = p1+
2

4�β�−2−β t,

Θβ,ν =
1

π

∫ ∞

0

E2
β,�β�

(
−ν

2
ξ2
)
dξ, t̂ = Θβ,νΓ (2 
β� − 1− β/2) t2�β�−1−β/2,

and hence we have the following:
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(1) Second moment formula: By (1.17), the second moment formula is

E
[
u2(t, x)

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u2
0 E1−β/2

(
λ2Θβ,νΓ (1− β/2) t1−β/2

)
if β ∈ (0, 1],

u2
0 E3−β/2

(
λ2Θβ,νΓ (3− β/2) t3−β/2

)
+2u0u1 t E3−β/2,2

(
λ2Θβ,νΓ (3− β/2) t3−β/2

)
+2u2

1 t
2 E3−β/2,3

(
λ2Θβ,νΓ (3− β/2) t3−β/2

) if β ∈ (1, 2).

(A.15)

(2) Second moment Lyapunov exponent: From (A.11), we see that

lim
t→∞

1

t
logE

[
u(t, x)2

]
=
(
λ2Θβ,νΓ (2 
β� − 1− β/2)

) 2
4�β�−2−β .(A.16)

(3) Moment asymptotics: Since the fundamental solution in this case is nonneg-
ative (see Remark 5.3), we can combine the asymptotics in both (1.21) and (1.23)
to see that

C1p
4�β�−β

4�β�−2−β ≤ lim inf
t→∞

logE[|u(t, x)|p]
t

≤ lim sup
t→∞

logE[|u(t, x)|p]
t

≤ C2p
4�β�−β

4�β�−2−β , p ≥ 2,

(A.17a)

C1t ≤ lim inf
p→∞

logE[|u(t, x)|p]
p

4�β�−β
4�β�−2−β

≤ lim sup
p→∞

logE[|u(t, x)|p]
p

4�β�−β
4�β�−2−β

≤ C2t, t > 0.

(A.17b)

The upper bound for the large-time asymptotics in (A.17a) recovers the results
obtained in [6]; see Theorems 3.5 and 3.6 (ibid.). In particular, when β ∈ (0, 1],
Mijena and Nane [44, Theorem 2] obtained the same upper bound as in (A.17a).
Except the upper bound in (A.17a), all the rest results in this example are new.

In Figure A.2, we plot the graphs of θ, Θβ,ν , 1 + 1/(1 + θ), and the second
moment Lyapunov exponent as functions of β with λ and ν being set to 1 and 2,
respectively.

Example A.6. Mijena and Nane [44] studied the case when β ∈ (0, 1], α ∈ (0, 2],
γ = 1− β, namely,

(A.18)

{(
∂β
t +

ν

2
(−Δ)α/2

)
u(t, x) = I1−β

t

[
λu(t, x)Ẇ (t, x)

]
, t > 0, x ∈ Rd,

u(0, ·) = u0,

under the condition

d < α min
(
2, β−1

)
.(A.19)

Note that condition (A.19) is the same as (1.16) under this specific setting. In [44],
the upper bound of the large-time exponent (1.21a) was obtained; see Theorem 2
ibid. Since the fundamental solution in this case is nonnegative (see Remark 5.3),
we can apply Theorem 1.1 to have exact formulas for both the second moment and
the second moment Lyapunov exponent, and to have matching lower bounds for
the moment asymptotics. To be more precise, in this case we have

θ = −βd/α, tp = p
2α−βd
α−βd t,

Θα,β,d,ν =
1

(2π)d

∫
Rd

E2
β

(
−ν

2
|ξ|α
)
dξ, t̂ = Θα,β,d,νΓ (1− βd/α) t1−βd/α,
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0 0.5 1 1.5 2

− 1/2

0

1

3/2

2

3

β

θ

1 + 1/(1 + θ)

0 0.5 1 1.5 2
0.15

1
2
√
2π

0.25

0.3

0.4

1/2

SHE: 1

2
√

2π
≈ 0.199

SWE

β

Θβ,2

0 0.5 1 1.5 2

SHE: 1/8

0.25

0.4

0.6

SWE: 1/
√
2

β

Second moment Lyapunov exponent

Figure A.2. Plots of the quantities in Example A.5 with λ = 1
and ν = 2. For all these graphs, at the jump point β = 1, one
needs to take the left limit.

and hence we have the following results:

(1) Second moment formula:

E
[
u2(t, x)

]
= u2

0 E1−βd/α

(
λ2Θα,β,d,ν Γ (1− βd/α) t1−βd/α

)
.(A.20)

(2) Second moment Lyapunov exponent:

lim
t→∞

1

t
logE

[
u(t, x)2

]
=
(
λ2Θα,β,d,ν Γ (1− βd/α)

) α
α−βd .(A.21)

(3) Moment asymptotics:

C1p
2α−βd
α−βd ≤ lim inf

t→∞

logE[|u(t, x)|p]
t

≤ lim sup
t→∞

logE[|u(t, x)|p]
t

≤ C2p
2α−βd
α−βd , p ≥ 2,

(A.22a)

C1 t ≤ lim inf
p→∞

logE[|u(t, x)|p]
p

2α−βd
α−βd

≤ lim sup
p→∞

logE[|u(t, x)|p]
p

2α−βd
α−βd

≤ C2 t, t > 0.

(A.22b)
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Note that except the two lower bounds in (A.22a) and (A.22b) require α ∈ (0, 2],
all the rest formulas/upper bounds in this example hold true for all α > 0. In
particular, this would allow higher dimensions for large α; see (A.19).

Example A.7. In this example, we study the following one-parameter family of
SPDEs with SHE (1.2) (resp. SWE (1.3)) being a special (resp. limiting) case:

(A.23)

(
∂β
t − ν

2

∂2

∂x2

)
u(t, x) = λu(t, x)Ẇ (t, x), t > 0, x ∈ R, β ∈ (0, 2) ,

with the same initial condition as SHE (1.2) (resp. SWE (1.3)) when β ∈ (0, 1]
(resp. β ∈ (1, 2)). This is the case when α = 2, β ∈ (0, 2), γ = 0 and d = 1.
Dalang’s condition (1.16) reduces to

β > 2/3,

and quantities in (1.14) become

θ := −2 + 3β/2, tp := p3β/(3β−2)t,

Θβ,ν := π−1

∫ ∞

0

E2
β,β(− 1

2νξ
2)dξ, t̂ := Θβ,ν Γ (−1 + 3β/2) t−1+3β/2.

Note that the fundamental solution is nonnegative (see Remark 5.3). Here we
summarize the properties of the solution to (A.23) as follows:

(1) Second moment formula:

E
[
u2(t, x)

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u2
0 E−1+3β/2

(
λ2Θβ,ν Γ (−1 + 3β/2) t−1+3β/2

)
if β ∈ (0, 1],

u2
0 E−1+3β/2

(
λ2Θβ,ν Γ (−1 + 3β/2) t−1+3β/2

)
+2u0u1 t E−1+3β/2,2

(
λ2Θβ,ν Γ (−1 + 3β/2) t−1+3β/2

)
+2u2

1 t
2 E−1+3β/2,3

(
λ2Θβ,ν Γ (−1 + 3β/2) t−1+3β/2

) if β ∈ (1, 2).

(A.24)

(2) Second moment Lyapunov exponent:

lim
t→∞

1

t
logE

[
u(t, x)2

]
=
(
λ2Θβ,ν Γ (−1 + 3β/2)

)2/(3β−2)
.(A.25)

(3) Moment asymptotics:

C1p
3β

3β−2 ≤ lim inf
t→∞

logE[|u(t, x)|p]
t

≤ lim sup
t→∞

logE[|u(t, x)|p]
t

≤ C2p
3β

3β−2 , p ≥ 2,

(A.26a)

C1 t ≤ lim inf
p→∞

logE[|u(t, x)|p]
p3β/(3β−2)

≤ lim sup
p→∞

logE[|u(t, x)|p]
p3β/(3β−2)

≤ C2 t, t > 0.

(A.26b)

Thanks to (2.5), all the above quantities when β → 2 converge to the corresponding
ones in Example A.2 for SWE (1.3); see Figure A.3 for some numerical simulations.
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SWE: 1/
√
2 ≈ 0.707

β

Θβ,1

2/3 0.8 1 1.2 1.4 1.6 1.8 2

0

1/4

2−
1/4

1.2

1.6

SHE: 1/4

SWE: 2−
1/4 ≈ 0.841

β

Second moment Lyapunov exponent

Figure A.3. Plots of Θβ,ν and the second moment Lyapunov ex-
ponent in Example A.7 with λ = 1 and ν = 1

Appendix B. Some miscellaneous lemmas

In this section, we provide some technical lemmas. Lemma B.1 will be used to
prove Dalang’s condition (1.16) in Theorem 3.3.

Lemma B.1. For all ε > 0, a, b > 0, and c ∈ R, it holds that

(B.1)

∫
Bc

ε(0)

cos2(|x|a + c)

|x|b dx < ∞ if and only if b > d.

Proof. We only consider the case d ≥ 2 while the case d = 1 is similar but easier.
Denote the integral in (B.1) by I. Since the integrand is radial,

I = C

∫ ∞

ε

cos2(ra + c)

rb
rd−1dr, with C =

2πd/2

Γ (d/2)
.
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Clearly, b > d is a sufficient condition for (B.1). To get the necessity, observe that

I =
C

a

∫ ∞

εa
cos2(s+ c)s−

1
a (b−d)−1ds

≥ C

a

∞∑
n=N

∫ (n+ 1
4 )π−c

nπ−c

cos2(s+ c)s−(b−d)/a−1ds

≥ Cπ−(b−d)/a

8a

∞∑
n=N+1

n−(b−d)/a−1,

where N = N(εa, c) is a finite positive integer. The series on the right-hand side is
convergent if and only if b > d and thus b > d is also necessary for (B.1). �

Lemma B.2 is a convolution-type Gronwall lemma, which was proved in
Lemma A.2 of [15] for θ ∈ (−1, 0). But indeed, the same proof can be extended
directly to all θ > −1. One can use Lemma B.2 to obtain the moment formulas in
Theorem 1.1 as pointed out in Remark 4.1.

Lemma B.2. Suppose that θ > −1, κ > 0 and that g(·) : R+ → R is a locally
integrable function. If f satisfies

(B.2) f(t) = g(t) + κ

∫ t

0

(t− s)θf(s)ds, for t ≥ 0,

then

(B.3) f(t) = g(t) +

∫ t

0

g(s)K(t− s)ds,

with K(t) = κΓ(θ + 1)tθEθ+1,θ+1(κΓ(θ + 1)tθ+1). Moreover, if we further assume
g(·) ≥ 0 and the equality in (B.2) is replaced by ≤ (resp. ≥), then the equality in
(B.3) is replaced by ≤ (resp. ≥) accordingly.

Lemma B.3 will be used to obtain the explicit second moment formula for sto-
chastic wave equation (i.e., β = 2) in Examples A.2 and A.4.

Lemma B.3. For α > 1 and b > 0, it holds that∫ ∞

0

sin2
(
b ξ

α
2

)
ξα

dξ

=

⎧⎪⎪⎨⎪⎪⎩
22(1−

1
α)α−1 cos

(π
α

)
Γ

(
2

(
1

α
− 1

))
b2−

2
α if α ∈ (1, 2) ∪ (2,∞),

1

2
bπ, if α = 2.

Proof. Denote the integral by I. By change of variable z = ξα/2, we see that

I =
2

α

∫ ∞

0

sin2 (bz)

z3−2/α
dz.

Let f(x) = 1I[−b,b](x) and g(x) be an even function defined as, for x > 0,

g(x) =
π

4Γ (2(1− 1/α)) sin (π/α)

[
(x+ b)

1−2/α
+ |b− x|1−2/αsgn(b− x)

]
.

Licensed to Auburn Univ. Prepared on Thu May 30 22:21:32 EDT 2024 for download from IP 131.204.254.113.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4296 L. CHEN, Y. GUO, AND J. SONG

Now we compute the Fourier transforms for these two functions. It is clear that

f̂(ξ) =
2 sin(b ξ)

ξ
.

Let h(ξ) = |ξ|−2(1−1/α) sin (b |ξ|). By (2) on p.19 of [33], we see that

F−1h(x) =
1

2π

∫
R

eixξh(ξ)dξ =
1

π

∫ ∞

0

h(ξ) cos(xξ)dξ =
1

π
g(x),

under the following condition:∣∣∣∣ 2α − 1

∣∣∣∣ < 1 ⇐⇒ α > 1.

Hence, when α > 1, we have ĝ(ξ) = πh(ξ). Then by the Plancherel theorem,∫
R

f(x)g(x)dx =
1

2π

∫
R

f̂(ξ)ĝ(ξ)dξ =
1

π

∫ ∞

0

2 sin(b ξ)

ξ
πξ−2(1−1/α) sin (b ξ) dξ = αI.

On the other hand,∫
R

f(x)g(x)dx =2

∫ b

0

g(x)dx

=
π

2Γ (2(1− 1/α)) sin (π/α)

∫ b

0

[
(x+ b)1−2/α + (b− x)1−2/α

]
dx

=
π21−2/αb2−2/α

Γ (2− 2/α) (2− 2/α) sin (π/α)

=
π21−2/αb2−2/α

Γ (3− 2/α) sin (π/α)
.

Hence, if α = 2, the above expression becomes bπ. This proves the lemma for the
case α = 2. Now if α �= 2, we have∫

R

f(x)g(x)dx =
π21−2/αb2−2/α

Γ (3− 2/α) sin (π/α)
× Γ (2(1/α− 1))

Γ (2(1/α− 1))

=
21−2/αb2−2/αΓ (2(1/α− 1))

sin (π/α)
sin (2π/α)

=22−2/αb2−2/αΓ (2(1/α− 1)) cos (π/α) ,

where we have applied the reflection formula for Gamma function (2.8) in the second
equality. This completes the proof of Lemma B.3. �

For two sequences of positive numbers an, bn, n ∈ N, we write

an ∼ bn if lim
n→∞

an/bn = 1.

Lemma B.4 will be used to calculate the lower bounds of moments in Theorem 5.9.

Lemma B.4.

(1) As n → ∞, we have∫ ∞

n

tne−tdt ∼ nn

en

√
πn

2
and(B.4)

n−1∑
m=0

nm

m!
∼

2n−1∑
m=n

nm

m!
∼ 1

2
en.(B.5)
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(2) Given α > 0, for each constant c < α, we have

∞∑
m=n

(
nm

m!

)α

≥ exp(cn), for n sufficiently large.

Proof. (1) Denote the integral in (B.4) by In. By change of variable x = t√
n
−
√
n,

we see that

In =
nn

√
n

en

∫ ∞

0

e−
√
nx

(
1 +

x√
n

)n

dx.

Notice that g(x) := n log
(
1 + x√

n

)
− √

nx + x − log(1 + x) satisfies the following

properties:

g(0) = 0 and g′(x) =
(
√
n− 1)x2

(1 + x)(
√
n+ x)

≥ 0 for all x ≥ 0 and n ≥ 1,

from which we see that
(
1 + x√

n

)n
e−

√
nx ≤ (1+x)e−x for all x ≥ 0 and n ≥ 1 with

the upper bound being integrable. Hence, by the dominated convergence theorem
and L’Hospital’s rule, we conclude that

lim
n→∞

In en

nn
√
n
=

∫ ∞

0

lim
n→∞

e−
√
nx

(
1 +

x√
n

)n

dx =

∫ ∞

0

e−x2/2dx =

√
π

2
,

which proves (B.4).
To prove (B.5), it suffices to show Rn(n) ∼ 1

2 en and limn→∞ e−nR2n(n) = 0,
where Rk(x) is the remainder function for the Taylor expansion of ex:

Rk(x) =

∞∑
m=k

xm

m!
=

∫ x

0

(x− t)k

k!
etdt.

For Rn(n), by change of variable we get

Rn(n) =

∫ n

0

(n− t)n

n!
etdt =

en

n!

∫ n

0

xne−xdx.

By Stirling’s formula n! ∼
√
2πne−nnn and (B.4), we can show

(B.6)

∫ n

0

xne−xdx =

(
Γ(n+ 1)−

∫ ∞

n

xne−xdx

)
∼ 1

2
n!.

For R2n(n), we have

R2n(n) =

∫ n

0

(n− t)2n

(2n)!
etdt ≤ nn

(2n)!

∫ n

0

(n− t)netdt =
ennn

(2n)!

∫ n

0

xne−xdx.

Thus, by (B.6), we have

lim
n→∞

R2n(n)

en
≤ lim

n→∞

1

2

nn(n!)

(2n)!
= lim

n→∞

1

2

n2ne−n
√
2πn

(2n)2ne−2n
√
4πn

= 0,

which proves (B.5).
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(2) The desired result follows directly from the fact

∞∑
m=n

(
nm

m!

)α

≥
2n−1∑
m=n

(
nm

m!

)α

≥

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
2n−1∑
m=n

nm

m!

)α

, if α ∈ (0, 1],

n1−α

(
2n−1∑
m=n

nm

m!

)α

, if α > 1.

Then an application of (B.5) proves part (2). �
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[11] Le Chen and Guannan Hu, Hölder regularity for the nonlinear stochastic time-fractional slow
& fast diffusion equations on Rd, Fract. Calc. Appl. Anal. 25 (2022), no. 2, 608–629, DOI
10.1007/s13540-022-00033-3. MR4437294

[12] Le Chen and Guannan Hu, Some symbolic tools for the Fox H-function, 2023, DOI
10.5281/zenodo.10143785.

[13] Le Chen, Guannan Hu, Yaozhong Hu, and Jingyu Huang, Space-time fractional dif-
fusions in Gaussian noisy environment, Stochastics 89 (2017), no. 1, 171–206, DOI
10.1080/17442508.2016.1146282. MR3574699

Licensed to Auburn Univ. Prepared on Thu May 30 22:21:32 EDT 2024 for download from IP 131.204.254.113.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

https://mathscinet.ams.org/mathscinet-getitem?mr=4452644
https://mathscinet.ams.org/mathscinet-getitem?mr=4003574
https://mathscinet.ams.org/mathscinet-getitem?mr=1085341
https://mathscinet.ams.org/mathscinet-getitem?mr=1185878
https://mathscinet.ams.org/mathscinet-getitem?mr=3710633
https://mathscinet.ams.org/mathscinet-getitem?mr=3310358
https://mathscinet.ams.org/mathscinet-getitem?mr=3433576
https://mathscinet.ams.org/mathscinet-getitem?mr=3383450
https://mathscinet.ams.org/mathscinet-getitem?mr=4624137
https://mathscinet.ams.org/mathscinet-getitem?mr=4437294
https://mathscinet.ams.org/mathscinet-getitem?mr=3574699


MOMENTS AND ASYMPTOTICS FOR A CLASS OF SPDES 4299

[14] Le Chen, Yaozhong Hu, and David Nualart, Nonlinear stochastic time-fractional slow and
fast diffusion equations on Rd, Stochastic Process. Appl. 129 (2019), no. 12, 5073–5112, DOI
10.1016/j.spa.2019.01.003. MR4025700

[15] Le Chen, Yaozhong Hu, and David Nualart, Regularity and strict positivity of densities for the
nonlinear stochastic heat equation, Mem. Amer. Math. Soc. 273 (2021), no. 1340, pp. v+102,
DOI 10.1090/memo/1340.

[16] Le Chen and Jingyu Huang, Comparison principle for stochastic heat equation on Rd, Ann.

Probab. 47 (2019), no. 2, 989–1035, DOI 10.1214/18-AOP1277. MR3916940
[17] Le Chen and Kunwoo Kim, Nonlinear stochastic heat equation driven by spatially colored

noise: moments and intermittency, Acta Math. Sci. Ser. B (Engl. Ed.) 39 (2019), no. 3,
645–668, DOI 10.1007/s10473-019-0303-6. MR4066498

[18] Le Chen and Kunwoo Kim, Stochastic comparisons for stochastic heat equation, Electron. J.
Probab. 25 (2020), Paper No. 140, 38, DOI 10.1214/20-ejp541. MR4186259

[19] Xia Chen, Precise intermittency for the parabolic Anderson equation with an (1 + 1)-
dimensional time-space white noise (English, with English and French summaries), Ann.
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